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ABSTRACT

In this dissertation, the design of transmit and processing

waveforms is used to maximize the signal-to-interference ratio (SIR) to

improve the detectability of a doubly spread target return in the

presence of volume and/or surface reverberation plus white Gaussian

noise. The SIR is dependent upon target and reverberation scattering

functions and the cross-ambiguity function of the transmit and process-

ing waveforms. Volume reverberation, target, and surface reverberation

scattering functions are derived. Volume reverberation is modelled as

the spatially uncorrelated scattered field from randomly distributed

point scatterers in deterministic plus random translational motion. A

single scattering approximation is used and general, frequency dependent

transmit and receive arrays are included in all derivations. The doubly

spread target is modelled as a linear array of discrete highlights in

deterministic translational motion. A target scattering function is

obtained from the general bistatic volume reverberation scattering

function by appropriately specifying the volume density function of the

discrete point scatterers for a monostatic geometry. A surface rever-

beration scattering function dependent upon the directional wave number

spectrum is derived for a bistatic geometry using a generalized

Kirchhoff approach. This approach uses a Fresnel corrected Kirchhoff

integral and the Rayleigh hypothesis that a scattered field can be

represented as a sum of plane waves travelling in different directions.

No small slope approximation is made. All three scattering functions

predict spreading in both time delay and frequency.
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Three optimization problems concerning the maximization of the

SIR for a doubly spread target are formulated. Each problem is ex-

pressed in terms of an equivalent nonlinear programming problem

defined on a real space by restricting the transmit and processing

waveforms to be complex weighted, uniformly spaced pulse trains.

Each subpulse can be different in shape and can occupy the entire

interpulse spacing interval. The first two optimization problems

involve maximization with respect to the complex weights. The

third problem involves maximization with respect to the subpulse

parameters (for example, frequency deviation, swept bandwidth, etc.).

Of the three optimization problems, maximization with respect to the

subpulse parameters is the most interesting and significant one.

However, even with several simplifying assumptions, it is shown to

be a difficult nonlinear programming problem. No numerical results

are obtained for the various optimization problems.
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CHAPTER I

INTRODUCT ION

The purpose of this introductory chapter is threefold: (1)

to state the problem considered in this dissertation, (2) to high-

light the contents and assumptions in each chapter, and (3) to

summarize the significance of the results contained herein. Since

this dissertation includes several unique (although related) topics,

detailed discussion of relevant literature is reserved to the in-

-~ dividual chapters themselves.

This dissertation is concerned with the detection of a doubly

spread target return in the presence of volume and/or surface rever-

beration plus white Gaussian noise. The particular approach taken is

to maximize the signal- to-interference ratio (SIR) via design of the

transmit and processing waveforms. Previous research efforts have

been devoted mainly to either the slowly fluctuating point target or

singly spread target problems. The basic philosophy adopted is to

treat both the ocean medium and the target as linear; time-varying,

random filters.

Accordingly, Chapter II discusses the fundamentals of linear,

time-varying, deterministic and random filters. Throughout this

dissertation, the terms filter, system, and channel are used inter-

changeably. Four system functions which are used to characterize

linear, time-varying filters are introduced. These functions are

(1) the time-varying impulse response, (2) the time-varying frequency

response or transfer function, (3) the spreading function, and (4)
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the bi-frequency function. It is shown that these four system func-

tions and their corresponding autocorrelation functions are related

to one another via Fourier transformations. In addition to various

input-output relationships, expressions for the output power spectrum

for both deterministic and random systems are derived. The important

channel property of uncorrelated spreading is also discussed. The

discussion on uncorrelated spreading introduces the concepts of the

wide-sense stationary uncorrelated spreading (WSSUS) communication

channel and the scattering function along with its various Fourier

transforms. The scattering function determines the average amount

of spread that an input signal's power will undergo as a function of

round-trip time delay (range) and frequency.

A brief discussion of two different ways of characterizing a

time-varying channel via its scattering function concludes Chapter II.

The first method involves interpreting the scattering function as a

joint density function since it is real, non-negative, and can be

normalized to integrate to unity. Thus, first and second order

moments of the round-trip time delay (range) and frequency spread can

be computed. The second method i.s concerned with the finite extent

of the scattering function in the range-frequency plane. As a result

of this approach, the concepts of an underspread and an overspread

channel are defined. Criteria for avoiding spreading in range and/or

frequency are formulated in terms of the duration and bandwidth of

the transmit signal and the extent of the scattering function in the

range-frequency plane.

Chapter III introduces the problem of detecting a doubly

spread target return in the presence of reverberation and noise. A
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doubly spread target return is one which exhibits a spread in both

round-trip time delay and Doppler shift values. Chapter III begins

with a brief discussion of the complex envelope notation for bandpass

signals since the binary hypothesis testing problem is formulated in

terms of the complex envelopes of the target, reverberation, and noise

signals. Both the target and reverberation returns are modelled as

the outputs from linear, time-varying, random filters which are assumed

tobe WSSUS communication channels.

The particular receiver structure used is a correlator followed

by a magnitude squared operation. The magnitude squared output from

the correlator is tested against a threshold determined from a proba-

bility of false alarm constraint in a Neyman-Pearson test.

Having specified both the binary hypothesis testing problem and

the receiver, the signal-to-interference ratio (SIR) for a doubly

spread target is derived. It is shown to be dependent upon the target

and reverberation scattering functions and the cross-ambiguity function

of the transmit signal and the processing waveform. It is also demon-

strated that the more familiar SIR expression for a slowly fluctuating

point target can be obtained from the general SIR expression for a

doubly spread target.

The final discussion in Chapter III is devoted to the question

of receiver optimality, i.e., when is our choice of receiver an optimum

or sub-optimum receiver for detecting either a slowly fluctuating point

target or a doubly spread target. The discussion on optimality intro-

duces the performance measure A which is shown to be equal to the

SIR. The performance measure determines the probability of detection
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for a given probability of false alarm in the important case of

Gaussian statistics. In the case of Gaussian statistics, maximizing

A is equivalent to maximizing the probability of detection and it

is noted that this can be achieved by proper signal design.

In order to maximize the SIR for a doubly spread target via

signal design, one must be able to specify both the target and rever-

beration scattering functions. In general, the reverberation return

is a composite of volume, surface, and bottom reverberation returns.

However, only volume and surface reverberation are considered.

In Chapter IV, both a volume reverberation and a target scatter-

"4% ing function are derived. In the past, assumed functional forms for

the reverberation (clutter) scattering function were used in order

to calculate the SIR.

Volume reverberation is modelled as the scattered acoustic

pressure field from randomly distributed discrete point scatterers in

deterministic plus random translational motion. The point scatterers

are distributed in space according to an arbitrary volume density

function with dimensions of number of scatterers per unit volume.

The two-frequency correlation function representing the volume

reverberation communication channel is derived for a bistatic transmit!

receive planar array geometry. A single scattering approximation is

used and frequency dependent attenuation of sound pressure amplitude

due to absorption is included. The scattered fields from different

regions within the scattering volume are assumed to be uncorrelated.

The relationships between the two-frequency correlation function,

coherence time, coherenc2 bandwidth, and frequency and time spreading
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are also discussed. The volume reverberation scattering function is

obtained from the two-frequency correlation function via a two-

dimensional Fourier transformation. The volume reverberation

scattering function derived in Chapter IV is shown to include

explicitly all the important system functions and physical parameters

as opposed to having them lumped together and accounted for by a

single random variable as was common practice in the past. A proba-

bility density function of random Doppler shift due to the random

motion of the scatterers is also derived. En addition, the average

received energy from volume reverberation is computed from the volume

reverberation scattering function. Using several simplifying assump-

tions, it is shown to reduce to the sonar equation for reverberation

level.

The doubly spread target is modelled as a linear array of

discrete highlights in deterministic translational motion. The target

scattering function is obtained from the monostatic form of the volume

reverberation scattering function by appropriately specifying the

volume density function of the highlights.

Computer simulation results for both the volume reverberation

and target scattering functions are presented as examples involving a

monostatic transmit/receive array geometry. Computer plots of the

probability density function of the random Doppler shift are also

presented for a monostatic geometry as a function of Ehe standard

deviation of the random motion of the scatterers.

Chapter V is devoted to the derivation of a surface reverberation

scattering function. The underwater acoustic propagation path between
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transmit and receive arrays via the surface of the ocean is treated as

a linear, time-varying, random WSSUS communication channel. The

random, time-varying surface reverberation transfer function is derived

for a general bistatic geometry using a generalized Kirchhoff approach.

The generalized Kirchhoff approach uses a Fresnel corrected Kirchhoff

integral and the Rayleigh hypothesis that the scattered acoustic

pressure field can be represented as a sum of plane waves travelling

in many different directions. Also, no small slope approximation is

made.

The transfer function obtained in Chapter V is shown to be

greater in magnitude than those transfer functions previously derived

by the classical Kirchhoff approach, especially for the specular and

backscatter geometries. This is encouraging since results based upon

a classical Kirchhoff approach have predicted values for the scattering

coefficient that were smaller than experimental values. In addition,

a Gaussian functional form for the projected transmit beam pattern was

commonly assumed for mathematical convenience. The fact that the

actual projected transmit and receive beam patterns are not likely to

be Gaussian when doing experimental work leads to a major source of

error when comparing theoretical predictions with experimental results.

As a result, the transmit and receive directivity functions included

in the derivation of the transfer function in Chapter V are kept as

general, frequency dependent expressions. The necessary transf or-

mation equations which will project both directivity functions

exactly are provided.

Two second order functions are derived from the surface rever-

beration transfer function by assuming that the randomly rough, time-
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varying ocean surface is a zero mean, wide-sense stationary, Gaussian

random process. They are the two-frequency correlation function- and

the surface reverberation scattering function. These second order

functions are shown to be dependent upon the directional wave number

spectrum of the ocean surface. Previously published expressions for

the ocean surface reverberation scattering function were based upon

a Fresnel corrected Kirchhoff integral and a small slope approximation.

They pertain only to a specular geometry. In addition, these express-

ions do not include a receive directivity function and a Gaussian

functional form for the projected transmit beam pattern was assumed.

And furthermore, very specific models for the ocean surface were used

rather than the general form of the directional wave number spectrum.

The optimization problem of maximizing the SIR for a doubly

spread target via signal design is considered in Chapter VI. Both the

transmit and processing waveforms are restricted to be pulse trains.

Each subpulse of the transmit pulse train is allowed to be arbitrary

in shape and can occupy the entire interpulse spacing interval if

desired. This represents a generalization of earlier approaches. The

processing waveform is a time and frequency shifted replica of the

transmit pulse tra'in. Each subpulse of both the transmit and processing

pulse trains is complex weighted. Restricting the transmit and

processing waveforms to be complex weighted pulse trains allows the

integral expression of the SIR to be transformed into an equivalent

vector-matrix form.

Before the various optimization problems concerning the doubly

spread target are discussed, the slowly fluctuating point target case
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is considered. Although the point target problem is not of primary

concern in Chapter VI, it is an important and interesting probem~ in

its own right and is included for completeness since substantial

research effort has been devoted to it in the past. Two different

optimization problems concerning the maximization of the SIR for a

slowly fluctuating point target are discussed. The first problem is to

find the optimum, unit-energy, complex processing weighting vector that

maximizes the SIR when the complex transmit weighting vector and the

parameters of the subpulses are given. The second problem is to find

the optimum, transmit-processing, complex weighting vector pair that[maximizes the SIR when the parameters of the subpulses are given.

The maximization is subject to unit-energy constraints on both the

transmit and processing waveforms.

Three different optimization problems concerning the maximization

of the SIR for a doubly spread target are discussed. The first problem

is to find the optimum complex processing weighting vector that maximizes

the SIR when the complex transmit weighting vector and the parameters of

the subpulses are given. The maximization is subject to a unit-energy

constraint on the processing weighting vector and a constraint on the

desired amount of reverberation to be removed by the processing weighting

vector. The second problem is to find the optimum, transmit-processing,

complex weighting vector pair that maximizes the SIR when the parameters

of the subpulses are given. The maximization is subject to a dynamic

range constraint on the transmit weighting vector, a unit-energy con-

straint on the processing weighting vector, and a constraint on the

desired amount of reverberation to be removed by the processing

weighting vector.
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And finally, the third problem is to maximize the SIR for a

doubly spread target with respect to the parameters of the subpulses.

For this particular optimization problem, it is assumed that both the

transmit and processing weighting vectors are equal and given, and

that the maximization is subject to a constraint on the desired amount

of reverberation to be removed by the processing waveform and con-

straints on the subpulse parameters themselves.

Since all three optimization problems for the doubly spread

target are originally defined on a complex space, the approach taken

in Chapter VI is to formulate the optimization problems into equivalent

nonlinear programming problems defined on a real space.

The significance of this dissertation can be summarized by

stating that all the information required to solve the problem of

detecting a doubly spread target return in the presence of reverberation

and noise by maximizing the SIR via signal design is furnished; namely,

the receiver structure; target, volume reverberation, and surface

reverberation scattering functions; and the formulation of the various

SIR optimization problems into equivalent nonlinear programming

problems defined on a real space.



CHAPTER II

FUNDAMENTALS OF LINEAR TIME-VARYING FILTERS

2.1 Introduction

The purpose of this chapter is to introduce some of the basic

mathematical relationships, terminology, and concepts that are part of

linear, time-varying, filter theory. This chapter is divided into two

major sections. Section 2.2 is devoted to deterministic filters, and

Section 2.3 is devoted to random filters. Throughout this chapter and

the remainder of this dissertation, the terms filter, system, and

-channel will be used interchangeably.

Section 2.2 introduces four filter functions which are used to

characterize linear, time-varying filters. These functions are

I(1) the time-varying impulse response, (2) the time-varying frequency

response or transfer function, (3) the spreading function, and (4) the

bi-frequency function. It is shown that these four system functions

are related to one another via Fourier transformations. In addition

to various input-output relationships, an expression for the output

power spectrum is derived which demonstrates the frequency spreading

property of linear, time-varying filters.

Since Section 2.3 is devoted to random filters, the discussion

begins by defining the autocorrelation functions of the four system

functions. It is shown that the system autocorrelation functions are

also related to one another via Fourier transformations. The important

channel property of uncorrelated spreading is considered next. The

discussion on uncorrelated spreading introduces the concept
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of the scattering function and its various Fourier transforms. In

addition to various input-output relationships, expressions for the

output autocorrelation function and the output power spectral density

are also derived. Analogous to the deterministic results, the expression

for the output power spectral density also predicts frequency spreading.

And finally, there is some discussion on two different ways of charac-

terizing a Lime-varying channel via its scattering function. The first

method involves interpreting the scattering function as a density

function from which first and second order moments can be computed, and

the second method is concerned with the finite extent of the scattering

'function itself.

2.2 Linear Time-Varying Deterministic Filters

2.2.1 Impulse response and transfer functions. A linear, time-

varying filter is commonly depicted ae in Figure 1, where it is

characterized by its corresponding time-varying impulse response

function h(t,T). The function h(t,T) describes the response of the

filter at time t due to the application of a unit impulse at time T

The relationship between the input signal x(t) and the output signal

y(t) is given by:
1 3

y(t) f J x(a)h(t,a)da (2.2-1)

Note that if we let x(t) = 6(t - T) in Equation (2.2-1), where 6(-)

is the Dirac delta function, then:

f 6(Ci - T)h(t,)da = h(t,T) ,(2.2-2)

where use has been made of the sifting property of the Dirac delta

function.
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x(t) ~,)] y(t)

Figure 1. Linear time-varying filter.

The causality condition for a time-varying filter is:

h(t,T) = 0 for t < T (2.2-3)

which states that the filter cannot respond before the application of

an input signal. Using the causality condition of Equation (2.2-3) and

assuming that the input signal x(t) is zero for t < t , Equation0

(2.2-1) becomes:

t

y(t) = f x(T)h(t,T)dT . (2.2-4)

t
0

Both Equation (2.2-1) and (2.2-4) are equivalent representations of the

output if the time-varying filter is causal. The output of a linear,

time-invariant, causal filter can also be obtained from Equations

(2.2-1) and (2.2-4). In this case, h(t,T) becomes h(t - T) , where

h(t - T) = 0 for t < T ; and Equation (2.2-4) reduces to the well

known convolution integral

t

y(t) = J x(T)h(t - T)dT (2.2-5)

t
0

Analogous to the frequency response or transfer function H(f)

of linear, time-invariant systems is the time-varying frequency response

or transfer function H(f,t) of linear, time-varying systems. It is

defined by Zadeh 1,2 as:
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00

H(f,t) f f h(t,T)exp[-j2Trf(t - T)]dT (2.2-6)

where t is considered to be a parameter. Note that Equation (2.2-6)

will reduce to H(f) when the filter under consideration is in fact

time-invariant. When this is the case, h(t,T) = h(t - T) and

Equation (2.2-6) becomes:

00

H(f,t) = 0 h(t - T)exp[-j2Tf(t - T)]d . (2.2-7)

If we let a = t - T , then det = -dT and Equation (2.2-7) becomes:

00

H(f) = h(t)exp(-j2irft)dt (2.2-8)

which is the Fourier transform of h(t) . A very important observation

to make at this time is that h(t,r) and H(f,t) , as defined by

Equation (2.2-6), do not form a direct Fourier transform pair as h(t)

and H(f) do. 3  It will be shown later that if an alternate form of

the time-varying impulse response is used, a direct Fourier transform

pair can be formed between it and its corresponding time-varying

transfer function.

An equally important result is the fact that a complex exponen-

tial input signal can be used to define the frequency response of both
i

linear time-invariant and linear time-varying systems. This can

easily be shown by representing a linear, time-varying filter by the

linear operator L(-) which operates on input time functions. The

output of the filter y(t) can then be expressed as:

y(t) = L[x(t)] (2.2-9)

-
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If we now let x(t) = exp(+j2rf 0t) , where f is some arbitrary

constant frequency, then from Equations (2.2-1) and (2.2-9):

00
L[exp(+j2rf0t)] = J exp(+j2TrfT)h(t,T)dT , (2.2-10)

and using the definition of H(f,t) given by Equation (2.2-6),

L[exp(+j2Tf ot)] = H(f ,t)exp(+j2Tf ot) , (2.2-li)

where L[exp(+j27f 0t)] is the response of the filter to exp(+j27rf ot)

and H(f ,t) is the time-varying frequency response of the filter

evaluated at f = f
0

As was mentioned previously, h(t,T) and H(f,t) , as defined

by Equation (2.2-6), do not form a direct Fourier transform pair.

However, if we follow the development of Kailath 3 and introduce the

alternate form of the time-varying impulse response h(t,t - T), then

it can be shown that h(t,t - T) and H(f,t) , as defined by

Equation (2.2-6), do form a direct Fourier transform pair, i.e.,

h(t,t - T) +-- H(f,t) (2.2-12)
T

with t as a parameter. The function h(t,t - T) describes the

response of the filter at time t due to the application of a unit

impulse at time t - T . The time domain parameter T corresponds

to the "age" of the application of the unit impulse, i.e., t - T

seconds ago.

Equation (2.2-12) can be verified by starting with the defin-

ition of H(f,t) , i.e.,
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H(f,t) f 0 h(t,oL)exp[-j21Tf(t - a)Ida (2.2-13)

where t can be considered as a fixed constant. If we let O - t - T

then da = -dT and Equation (2.2-13) becomes:

H(f,t) = J h(t,t - T)exp(-j2TrfT)dT (2.2-14)

OD

which is the Fourier transform of h(t,t - T) with respect to T

As a result,

h(t,t - T) = H(f,t)exp(+j2nfT)df (2.2-15)

where h(t,t - t) is the inverse Fourier transform of H(f,t) .

The relationship between the input and output signals when

hkt,t - T) is used to describe a linear, time-varying filter can be

obtained from Equation (2.2-1), i.e.,

y(t) x(c)h(t,)da . (2.2-16)

-CO

If we let C = t - T as before, then dc -dT , where t is

considered to be a fixed constant. Substituting these relations into

Equation (2.2-16) yields the desired result:
3

y(t) = J x(t - T)h(t,t - T)dT (2.2-17)

The causality condition for h(t,t - r) is:

h(t,t - -- 0 for T < 0 . (2.2-18)

IIir ..
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Note that this condition depends only on T and not upon an inequality

relationship between t and T.

If the filter described by h(t,t - T) is in actuality time-

invariant, then h(t,t - T) - h[t - (t - T)J h(T) . As a result,

Equation (2.2-14) reduces to. H(f) = F{h(T)} , where F {- indicates

a forward Fourier transform. And furthermore, Equation (2.2-17)

reduces to the familiar convolution integral

y(t) = 0 x(t - T)h(T)dr , (2.2-19)

where h(T) = 0 for T < 0 for a causal filter.

And finally, if we let x(t) = exp(+j27fot) in Equation (2.2-17),

then,

L[exp (+j2iTft) = E(fot)exp(+j2f 0t) , (2.2-20)

where H(f ,t) is the time-varying transfer function of the filter0

given by Equation (2.2-14) evaluated at f = f , and where use of0

Equation (2.2-9) was made. Hence, a complex exponential input signal

can be used to define the frequency response of a linear, time-varying

filter characterized by either h(t,T) or h(t,t - T).3

In order to be consistent with the underwater acoustic signal

processing literature (e.g., see References 4-7), the time-varying

impulse response h(t,t - T) will hereafter by denoted as h(T,t),

i.e.,

h(T,t) = h(t,t - T) , (2.2-21)

where h(T,t) denotes the response of the filter at time t due
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to the application of a unit impulse at time t - T. This notation is

more succinct and convenient, especially when dealing with Fourier

transform pairs. Figure 2 summarizes the important relationships

established so far. Figure 2a is the more common representation of a

linear, time-varying filter, and Figure 2b is the alternate represent-

ation which will be used for the remainder of this dissertation.

2.2.2 Additional filter functions. Two filter functions have

already been presented which characterize linear, time-varying filters.

They are the time-varying impulse response and transfer functions. Two

additional filter functions will now be introduced; namely, the

spreading function and the bi-frequency function. The spreading

function will be discussed first.

The spreading function S(T, ) is defined as the Fourier
4-7

transform of h(T,t) with respect to t 4 i.e.,

h(T,t) S (-14) ,(2.2-22)

t

where

S() f h(r,t)exp(-j21t)dt (2.2-23)

and

h(T,t) J S(T, )exp(+j2t)d (2.2-24)

The frequency variable, 0 (in Hz), corresponds to the rate of change

of the filter's impulse response. The spreading function is a frequency

domain measure of the time variation of the filter. If the spectrum

S(r,P) is confined to low values of , then this would be an
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y(t) x(T)h(t,T)dT

H(ft) = f h(tt)eXp[j21Tf(t - t)]dT

Ca)

00

y (t) 00 x(t - -r)h(T,t)dT

h (-r , t) --r ft

00

H(f,t) f 00 h(T,t)exp(-j2TtfT)dT

-00

h tt) f 00H(f,t)eCp(+i2ThfT)df

(b)

Figure 2. Two different representations of linear, time-varying filters:

(a) the more common representation, and 
(b) an alternate

representation.
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indication that the characteristics or properties of the system are

changing slowly with time. However, if S(T,O) occupied the region

of high 0 values, then this would be an indication that the filter's

properties are varying rapidly with time.

It has already been shown that the output of a linear, time-

varying filter can be represented as

y(t) = f x(t - T)h(T,t)dT , (2.2-25)

where Equation (2.2-21) was substituted into Equation (2.2-17). An

alternate representation of y(t) can now be obtained by substituting

Equation (2.2-24) into Equation (2.2-25). Doing so yields:

y(t) = f f x(t - T)exp(+j214t)S(T,O)dTdO , (2.2-26)

-. 0

where the integrand term x(t - T)exp(+j270t) is a time and frequency

shifted version of the input signal. The output, as given by Equation

(2.2-26), can be interpreted as being equal to the sum of time and

frequency shifted components of the input weighted by the spreading

function S(T,O) . Therefore, the spreading function determines the

amount of spread in round-trip time delay T and frequency 0 that an

input signal will undergo as it passes through the time-varying

channel. 4-6

The last filter function to be discussed is the bi-frequency

function B(f,) . It is defined as being the Fourier transform of

4-7H(f,t) with respect to t , i.e.,
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H(f,t) +-------+ B(f,O) (2.2-27)
t

where
o

B(f,O) A J H (f, t)exp (-j 21T4t)dt (2.2-28)

-O

and

o

H(f,t) = f B(f,O)exp(+j24t)dO (2.2-29)

Just as the spreading function gives an indication of how rapidly

h(r,t) changes with time, the spectrum B(f,O) gives an indication

of how rapidly H(f,t) changes with time.5,6 If B(f,O) is confined

to large values of 4 , then this would be an indication that H(f,t)

varies rapidly with time. However, if B(f.,4) is concentrated mainly

in the region of low 4 values, then this would be an indication that

H(f,t) varies slowly with time.

The bi-frequency function can also be found by taking the

Fourier transform of S(T,O) with respect to T , i.e.,

S(T, B(f,4) , (2.2-30)
T

where
00

B(f,) = f S(r,O)exp(-j2TfT)dT (2.2-31)

and 00

S(T,) = B(f,o)exp(+j2lffT)df (2.2-32)

-CO

In addition, h(T,t) and B(f,O) form a two-dimensional Fourier

transform pair, i.e.,
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h(T,t) - B(f,4) (2.2-33)
T,t

where

B(f,O) - { h(Tt)exp[-j2T(fT + Ot)] dTdt (2.2-34)

and

h(T,t) = B(f,o)exp[+j2r(fT + t)]dfd .(2,2-35)

The interdependence which exists amongst the four filter

functions is depicted in Figure 3. Any one of these functions may be

7.
used to define completely the time-varying channel. The forward

Fourier transforms with respect to T and t are denoted by the

appearance of T and t , respectively, beside the lines in Figure 3.

2.2.3 Output power spectrum. Let us now compute the complex

frequency spectrum of the output signal y(t) . We begin by expressing

the input in terms of its inverse Fourier transform, i.e.,

x(t) = f X(f)exp(+j27ft)df (2.2-36)

If x(t) , as represented by Equation (2.2-36), is passed through a

linear, time-varying filter, then,

y(t) - f X(f)L[exp(+j2wft)ldf (2.2-37)

or

y(t) = f X(f)H(f,t)exp(+j2rft)df , (2.2-38)
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TIME-VARYING
IMPULSE RESPONSE

SPREADING S T P ,0 TIME-VARY ING
FUNCTION r FREQUENCY RESPONSE

B I-FREQUENCY
FUNCTION

Figure 3. Interdependence amongst the four filter functions
that characterize linear, time-varying channels.
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where use was made of Equations (2.2-9) and (2.2-20). Note that

Equation (2.2-38) is not the inverse Fourier transform of X(f)H(f,t) 5

By definition, the output spectrum Y(n) is equal to:

Y() 0 j y(t)exp(-j2rrnt)dt (2.2-39)

and upon substituting Equation (2.2-38) into Equation (2.2-39), one

obtains:

Y() = f X(f) H(f,t)exp[-j2r(i - f)t]dtdf

(2.2-40)

From Equation (2.2-28), it can be seen that the inner integral

appearing in Equation (2.2-40) is equal to B(f, - f) so that:

Y(n) J [ X(f)B(f,i - f)df (2.2-41)

which is in the form of a frequency domain convolution integral.

Referring back to Equations (2.2-28) and (2.2-41), note that n - f

or E E f + p . In other words, the output frequencies n are equal

to the sum of the input frequencies f and the filter variation

frequencies .3 Equation (2.2-41) demonstrates that one of the

properties of linear, time-varying filters is the frequency spreading

of the input spectrum due to the system variation frequencies * . As

Kailath 3 points out, the frequency behavior of linear, time-varying

channels is usually evidenced by a frequency spread, frequency shift,

or both. The amount of frequency spreading produced may depend upon

the frequency components of the input.
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Since y(t) is a deterministic signal, the output power spectrum

can be obtained directly from Equation (2.2-41) by computing IY(r)01 2 .

As a concluding example, let us use Equation (2.2-41) to compute

the relationship between the input and output power spectrums for

linear, time-invariant, deterministic filters subject to deterministic

inputs. If a linear, time-varying filter is in fact time-invariant,

then H(f,t) = H(f) and Equation (2.2-28) reduces to:
00

B(f, ) = H(f) f exp(-j2Trt)dt (2.2-42)

or

B(f, ) H(f)6(4) (2.2-43)

since

1 t--- 6(0) (2.2-44)

Substituting Equation (2.2-43) into Equation (2.2-41) yields the

familiar expression:

Y(n) = X(n)H(n) (2.2-45)

and as a result,

S Nr0 = S (N) JH(n)l 2 , (2.2-46)

where S ()) IX(n)12  and S y(n) _ Iy(n)12  are the input and outputx y

power spectrums, respectively, since x(t) and y(t) are both

deterministic signals.
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2.3 Linear Time-Varying Random Filters

2.3.1 Filter autocorrelation functions. In Section 2.2, four

system functions were introduced which are used to characterize linear,

time-varying, deterministic filters. These system functions are:

(1) the time-varying impulse response, h(T,t); (2) the time-varying

frequency response, H(f,t); (3) the spreading function, S(T,O); and

(4) the bi-frequency function, B(f,O). However, if the filter is

random, then each of these channel functions must be considered as a

random function of two variables. In this section, we will derive the

various Fourier transform pairs which exist amongst the four filter

autocorrelation functions. But first, let us define the autocorrelation

Nand autocovariance functions as they are to be used in this dissertation.

Consider a random process x(r,s) which is a function of the two

variables r and s . The autocorrelacion function of x(r,s) , denoted

by R x(r,r',s, s') , is defined as:

R (r,r',s ,s') E{x(r,s)x*(r',s')} , (2.3-1)x

where E(.} is the linear, expectation operator and the asterisk denotes

complex conjugation. The average instantaneous power of x(r,s) can be

found from Equation (2.3-1) by setting r' r and s' s , i.e.,

R (rs) = E{Ix(r,s)I 2  (2.3-2)

The autocovariance function of x(r,s) , denoted by

C (r,r',s,s') , is defined as:

C (r,r',s,s') = E{[x(r,s) - px(r,s)]
x

•[x(r',s') - Uxi(r t ,s')i *} , (2.3-3)
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where

jx (r,s) = E{x(r,s)} . (2.3-4)

Upon expanding the right-hand side of Equation (2.3-3), one obtains:

Cx(r,r' ,s,s') R(rr',ss') - (r,S)(r',s')

(2.3-5)

It can be seen from Equation (2.3-5) that if x(r,s) is zero mean,

then the autocovariance and autocorrelation functions are equal. Also,

the variance of x(r,s) can be obtained from Equation (2.3-5) by

setting r' f r and s' = s , i.e.,

Var{x(r,s)} = Cx(r,s) = Ef{x(r,s) - 1x(r,s)1 2 }

(2.3-6)

= E{Ix(r,s)J2)- x(r,s)12  , (2.3-7)

where use has been made of Equation (2.3-2). From Equation (2.3-7), it

can be seen that if x(r,s) is zero mean, then the variance of x(r,s)

is equal to the average instantaneous power of x(r,s)

Now that the autocorrelation and autocovariance functions of a

random function of two variables have been defined, the derivation of

the various Fourier transform pairs that exist amongst the four filter

autocorrelation functions can proceed.

The four filter autocorrelation functions are defined as follows:

Rh(t,t',t,t') = E{h(T,t)h*(T',t')l (2.3-8)

RH(f,f',t,t') = E{H(f,t)H*(f',t')} (2.3-9)

RS ' ' EfS(,S*(T',O')} (2.3-10)
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and

R B(f,f,,,)_ E{B(f, )B*(f',O')} (2.3-11)

With the proper interpretation, it can be shown, for example,

that % and RH form a two-dimensional Fourier transform pair, i.e.,

Rh(TI(f,f',t,t') (2.3-12)

In order to clarify the phrase "proper interpretation," let us take the

two-dimensional forward Fourier transform of Rh , with respect to T

and T' , using the standard sign convention, i.e.,

0

fIlO' Rh(CrT','t~t')exp[-j2ir(fz + f'T')Jdd-r' .(2.3-13)

Substituting Equation (2.3-8) into Equation (2.3-13), and interchanging

the operations of integration and expectation yields:

00 
00

E f h(T,t)exp(-j27fT)dr f h *(T',t')exp(-j2Tf1T')dr'}

_CO -OD (2.3-14)

or
* t

E{H(f,t)H (-f',t')} = R (f,-f',t,t') (2.3-15)

Upon close inspection of the right-hand side of Equation (2.3-15), it

can be seen that this is not the desired result as given by the right-

hand side of Equation (2.3-12). However, if we define the forward

Fourier transform of h(T',t') with respect to T' with a positive

complex exponential term, i.e.,
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00

fOD h(z',t')exp(+j27rf'T")dT'
(2.3-16)

then, 00

H '' h (' ,t' )exp(-j2Trf'T')dT' (2.3-17)

which is identical to the second integral expression appearing 
in

Equation (2.3-14). Therefore, Equation (2.3-14) reduces to:

E{H(f,t)H*(f',t')} = RI(f,f',t,t') (2.3-18)

which is the desired result. Thus, if we use the convention that

forward transforms with respect to T and t are defined with a

negative complex exponential (inverse transforms are defined with a

positive complex exponential), and forward transforms with 
respect to

T' and t' are defined with a positive complex exponential (inverse8

transforms are defined with a negative complex exponential), 
then the

four system autocorrelation functions are related by the 
following

Fourier transform pairs:

R (T,',t't') R 'H(f'f 'tt') , (2.3-19)

where
00

R.H(f,f',t,t') f JC J Rh (rt,'t')
exp[-j2Tr(fT - f'T')]dTdT'

(2.3-19a)
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and c

*expf+j27T(fT -f'T')]dfdf' ,

(2.3-19b)

R H(ff ' t ) R B(ff',4 4q ) (2.3-20)

where 
0

R B fff,,' R J H(f'fI~t't')
'lot exp[-j27(c t - O't')Jdtdt' (2.3-20a)

and 0

- exp[+j27T6Pt - 't')I dOdW

(2.3-20b)

t,t'

where

R s(TT'441) -0 .f {Rh(T,T~t~t')
*exp[-j2rT(Ot - p't')]dtdt' (2.3-21a)
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and

exp[+j2Tr(Ot - t')]dodO'; (2.3-21b)

R~~~ ~~ (,',P) -- $ R(fjf'4 ) , (2.3-22)

where

*exp[-j2Tr(f-r - f'T')IdTdt' (2.3-22a)

and 
0

R J x~'m44')
-00

*exp[+j2Tr(fr - f'-r')Idfdf' ;(2.3-22b)

and finally,

Rh Tt t t )T ' , t t RB f " O 0 (2.3-23)

where 0

*exp[-J.'rr(f-t - f'T' + rot - O't')]dTdT'dtdt'

(2. 3-23a)
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and

Rh (z,T',t,t') f f f' f (f'f',lml)

exp[+j21T(fT - f'T' + *t - t')]dfdf'ddO'.

(2.3-23b)

The interdependence which exists amongst these autocorrelation

functions is illustrated in Figure 4. The forward Fourier transforms

with respect to T , T', t, and t' are denoted by the appearance of

T , Tv , t , and t' , respectively, beside the lines in Figure 4.

2.3.2 Uncorrelated spreading - the scattering function. As can

be seen from Figure 4, the filter autocorrelation functions are, in

general, dependent upon four variables. However, if it is assumed that

the spreading function S(T,4) is uncorrelated with S(T',4') for all

t # t' and p # 4' , then the autocorrelation functions can be

simplified.

The assumption of uncorrelated spreading is mathematically

equivalent to stating that the autocovariance of S(T,4) and S(T',4')

is zero for all T T' and $ ' , i.e.,

CS= RS(T,r', ,O') - Ps(T,0)1S(T ,') (T 0 ,

(2.3-24)

where pS(T,4 ) = E{S(T,4)} If it is assumed that pS (t, ) = 0 , then

Equation (2.3-24) is equivalent to:

R = RS(T,)6(T - ')6(0- 0') , (2.3-25)

tj
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Rs(T ~ R h (T, T t,t NHff.p'

Figure 4. Interdependence amongst the four filter
autocorrelation functions that characterize
linear, time-varying, random channels.
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where the function

RS(t,4) S E{IS(t,O)1 2 }  (2.3-26)

is called the scattering function and is equal to the variance of the

spreading function.4- 7 The scattering function can be thought of as an

average power density function which determines the average amount of

spread that an input signal's power will undergo as a function of

round-trip time delay T and frequency 4 . Note that RS(T,) is a

real, non-negative function of T and .

Equation (2.3-25) was the result of the assumption that

WS (T,) - 0 . However, even if S(T, ) is non-zero mean, it is an

easy matter to do the analysis with a centered process SC(T,) obtained

by subtracting from S(T,O) its mean value pS (Tq) . i.e.,

SC (T,O) = S(T,) - S(, . (2.3-27)

The random process S C(T,d) has zero mean and its autocovariance is

equal to:

Cc(r,T',4,') = E(Sc(T,O)Sc(',T')I (2.3-28)

= CS(T,T',W,') (2.3-29)

which is the autocovariance of S(T,4)

Let us now examine the implications and the effect that the

assumption of uncorrelated spreading will have on the other three system

autocorrelation functions. As Figure 4 indicates, RH(f,f',t,t') can

be obtained by taking the inverse two-dimensional Fourier transform of

RS( with respect to and ' , and then taking the



34

forward two-dimensional Fourier transform with respect to T and T'

Doing so yields:

RH(f,f',t,tt) f f ff f R S(TT',4 , ')

exp[+j27T(t - 't')1d dW'

exp(-j2l(fT - f'T')]dTdT' , (2.3-30)

where use has been made of Equations (2.3-19a) and (2.3-21b). Upon

substituting Equation (2.3-25) into Equation (2.3-30), one obtains:

R(ff',tt') = RH(AfAt) , (2.3-31)

where

R H (Af,At) - f f R S(t, )exp(-2r(AfT - t)do

(2.3-32)

where Af = f -f' and At = t - t' . The expression R(Af,At) is

sometimes referred to as the time-frequency correlation function and

it is generally a complex quantity.5'7 It can be seen from Equation

(2.3-31) that when uncorrelated spreading is assumed, the auto-

correlation function RH(f,f',t,t') becomes a function of time and

frequency differences only. This implies that the random process

H(f,t) is wide-sense stationary in both frequency and time. An

additional requirement for H(f,t) to be wide-sense stationary in

both frequency and time is that
9

PH(f,t) - E{H(f,t)} - constant (2.3-33)
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Since the four filter functions are related by linear transformations

(see Figure 3), if PS (T,4) = 0 , then Ph(T,t) = PH(f,t) - B(f,) - 0

Therefore, Equation (2.3-33) is satisfied since it was assumed that

P S (T,4) = 0 , and hence, P H(f,t) - 0 The condition of uncorrelated

spreading (scattering) in round-trip time delay T is equivalent to a
7

condition of wide-sense stationarity in frequency (Af). The condition

of uncorrelated spreading (scattering) in frequency 0 is equivalent

to a condition of wide-sense stationarity in time (At).7 When

uncorrelated spreading (scattering) in both T and 0 occur together,

we have a wide-sense stationary uncorrelated scattering (WSSUS)

channel. 7,8,10

Next, consider the autocorrelation function Rn(T,T',t,t')

Upon substituting Equation (2.3-25) into Equation (2.3-21b), one

obtains:

Rh(t,T',t,t') = Rh(T,At)6(T - T') (2.3-34)

where

Rh(T,At) f Rs(T,O)exp(+j2r4At)dO (2.3-35)

and At t - t' . Fquation (2.3-34) indicates that the random

process h(T,t) is wide-sense stationary in time because of the At

dependence and since ph(T,t) - 0 . Equation (2.3-34) also indicates

that h(T,t) is uncorrelated for all values of T' # T .

And finally, upon substituting Equation (2.3-25) into Equation

(2.3-22a), the autocorrelation function of the bi-frequency function

reduces to:
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B(f~f,, , ,) = (Afc)S(O - 4,) , (2.3-36)

where

JBAO RS(T,OVexp(-j2r~fT)dT (2.3-37)

and Af f - f' . Equation (2.3-36) indicates that the random

process B(f,o) is wide-sense stationary in frequency because of the

Af dependence and since vB(f,O) = 0 . Equation (2.3-36) also

indicates that B(f,4) is uncorrelated for all values of C' #

Let us now summarize the results obtained so far. Under the

assumption of uncorrelated spreading, the four filter autocorrelation

functions originally defined by Equations(2.3-8) through (2.3-11)

reduce as follows:

Rh(T,-T',t,t') Kj R(T,At)S(z- ') , (2.3-34)

RH (f,f't,t') R R(AfAt) , (2.3-31)

R=S - RS(T,0)6(T - - 4') (2.3-25)

and

RB (ffI f - (Af,)6(P - 0') , (2.3-36)

where R H(AfAt) and R S(T,) are referred to as being the time-

frequency correlation function and the scattering function,

respectively, and Af = f - f' and At - t - t'
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2.3.3 The scattering function and its Fourier transforms.

Since Equation (2.3-35) can be interpreted as being the inverse Fourier

transform of the scattering function, then,

R h(T'At) At )-- R S (,q) ,(2.3-38)

wh r RJ(, )G R.hjT At)exp(- 21r4At)d~t (2.3-39)

and

Rh(T,At) 0 f R S(T, )exp(+j2r At)d (2.3"35)

Similarly, since Equation (2.3-37) can be interpreted as being

the forward Fourier transform of the scattering function, then,

R S(TM T- -- R B(Af'co) ,(2.3-40)

where

R B (if ,) 00J R S(T, ) exp (-j21TAf T) dT (2.3-37)

and

Rs*,) S (I R B(AfA)exp(+2rAfT)dAf . (2.3-41)

Additional transform pairs can be obtained as follows. From

Equations (2.3-32) and (2.3-35), we have:
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Rh(tAt) .- RH(Af,At) (2.3-42)

where

R (Af'At) = I Rh(TAt)exp(-j27TAf )dT (2.3-43)
S--.

and

Rhr,At) = J R(Af,At)exp(+j27rAfT)dAf (2.3-44)

If Equation (2.3-39) is substituted into Equation (2.3-37), then one

obtains the two-dimensional Fourier transform pair

R hC ,At) R B R(Af,,) ,(2.3-45)
1rAt

where

B(eAf,o) - R(T,At)exp-j2r(AfT + OAt)]dTdAt
(2.3-46)

and

Rh (-,At) - f COf RB(Af,*O)exp(+j27T(Af + 4tit)]dAfdo

-00 (2.3-47)

And, upon using Equation (2.3-43) in conjunction with Equation (2.3-46),

one obtains:

RH(Af'At) R (Af,) ,(2.3-48)

H At B
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where

RB (Af f J RH(Af,At)exp(-j2v$At)dAt (2.3-49)
.-C

and

RH (AfAt) = J B(Af,)exp(+j2TrrAt)d4 (2.3-50)

The various Fourier transform pairs are summarized in Figure 5.

The forward transforms with respect to T and At are denoted by the

appearance of T and At , respectively, beside the lines in Figure 5.

The scattering function, or any of its three Fourier transforms, is a

complete statistical description of a WSSUS channel at the second

order.
7

And finally, another very important two-dimensional Fourier

transform relationship (not a transform pair) exists between the

scattering function and the time-frequency correlation function besides

Equation (2.3-32). It is obtained by substituting Equation (2.3-44)

into Equation (2.3-39). Doing so yields:

RS( )= f f RH(AfAt)exp[+j27(AfT - At)]dAfdAt

(2.3-51)

The time-varying frequency response relationship of Equation

(2.2-20) and the two-dimensional Fourier transform relationship of

Equation (2.3-51) are the two fundamental results upon which the

derivations of the volume reverberation, surface reverberation, and

target scattering functions will be based.

hLJ
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R hIT, At)

AtT

SCATTER ING R (D T At R H(Af. TIME-FREQUENCY
FUNCTION CORRELATION FUNCTION

Figure 5. The scattering function and its Fourier transforms.

----------- - - -
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2.3.4 Input-output relations - output power spectral density.

We will now proceed to derive an expression for the autocorrelation

function of the output from a linear, time-varying, random channel.

From Equation (2.2-26), we have that

y(t) I j'-O x(t - T)exp(+j2irT#)S(T, )dTd (2.3-52)

where x(t) is the deterministic input signal and S(T,) is now the

random spreading function of the filter. The output correlation

function R (t,t') is defined as:
y

R (t,t') = E{y(t)y*(t')} (2.3-53)Y

Substituting Equation (2.3-52) into Equation (2.3-53) and performing

the indicated operations yields:

00

R y(t,t') = j f fx( t - T)X*(t' - )epj2rt 't]

R (T,T',, ')dTddT'd4' , (2.3-54)
S

where R ST,t', ,4') is the autocorrelation function of the spreading

function [see Equation (2.3-10)]. If we make the assumption that the

filter exhibits uncorrelated spreading, then Equation (2.3-54) reduces

to:

R y(tt') = x(t - T)Rs(T,P)X (t' - T)

• exp(+j2TrcAt)dTdO (2.3-55)

fl.



42

where R S(T,O) is the scattering function, At t - t' , and use was

made of Equation (2.3-25). Using Equation (2.3-55), an expression for

the average output energy will be derived next.

The average instantaneous output power is given by:

R (t,t) = E{fy(t)12} (2.3-56)y

or, from Equation (2.3-55),

R(t,t) f J jx(t - T)l 2R S(T,p)dTd (2.3-57)

The average output energy can be found by integrating both sides of

Equation (2.3-57) with respect to t . If we define the energy of the

output signal E as:

y Yt)Idt (2.3-58)
y=,

then the average output energy E can be expressed as:y

1y- EE y} f E 2ly(t) 2}dt (2.3-59)

or

E f R y(t,t)dt (2.3-60)

Substituting Equation (2.3-57) into Equation (2.3-60) yields:11 '1 2

TEy/E = fj R S(T, p)d~dO (2.3-61)
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where

Ex J f jx(t)1 2dt (2.3-62)

is the energy of the input signal. Equation (2.3-61) indicates that

the ratio of output (received) average energy to input (transmitted)

energy for a WSSUS channel can be obtained by integrating the

scattering function of the channel with respect to both T and .

Also note that the average output energy is not a function of the

input signal's shape.

Alternate expressions for R (t,t') , other than those given
y

by Equations(2.3-54) and (2.3-55), can be obtained by representing the

output as:

y(t) = f X(f)H(f,t)exp(+j27Tft)df (2.3-63)

-CO

where X(f) is the Fourier transform of the deterministic input

signal x(t) , and H(f,t) is now the random, time-varying frequency

response of the filter. Substituting Equation (2.3-63) into Equation

(2.3-53) and performing the indicated operations yields:

R (t,t') = f X(f)X (f')RH(f,f',t,t')

. exp[+j2Tr(ft - f't')Idfdf' (2.3-64)

If we make the assumption that the filter exhibits uncorrelated

spreading, then Equation (2.3-64) reduces to:
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R (t,t') - X(f)X (f')R H(AfAt)
y

exp[+j2Tr(ft - f't')]dfdf'

(2.3-65)

where Af = f - f' , At = t - t' , and use was made of Equation

(2.3-31). A relationship between the output and input power spectral

densities can now be obtained from Equation (2.3-65).

If it is assumed that the input signal x(t) is a zero-mean,

wide-sense stationary (WSS), random process which is uncorrelated with

H(f,t) , then the output autocorrelation function given by Equation

(2.3-65) becomes modified as follows:

00

R(t,t') fJ E{X(f)X(f')RHf(AfAt)
-00

exp[+j2T(ft - f't')]dfdf' (2.3-65a)

Since x(t) was assumed to be WSS, then the following

relationship:

E{X(f)X (f')} = S x(f)6(f - f') (2.3-66)

exists (e.g., see Zadeh 3), and if Equation (2.3-66) is substituted

into Equation (2.3-65a), one obtains:

00

Ry(At) f Sx (f)R.H(O,At)exp(+j2TfAt)df (2.3-67)

-w0
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where S (f) is the power spectral density of x(t) and is defined asx

the Fourier transform of the autocorrelation function R (T) . The

output power spectral density S y(f) can now be obtained by Fourier

transforming both sides of Equation (2.3-67) with respect to At

Doing so yields:
1 3'14

S y(n) = Sx(f)RB(O, - f)df (2.3-68)

where
00

RB(O'n - f) RH(OAt)(-j 2r( - f)AtldAt (2.3-69)

Note that Equation (2.3-68) is in the form of a convolution integral

just like Equation (2.2-41) for the deterministic case. The convolu-

tion process accounts for the frequency spreading of the input power

spectral density.

2.3.5 Channel characterization via the scattering function.

An interesting consequence of Equation (2.3-61) is that the scattering

function can be thought of as a two-dimensional density function.
1 2

For example, if we define the constant K as:

K f R 2 . (T dT4O (2.3-70)

then, Equation (2.3-61) can be rewritten as:

f(,dd 1 ,(2.3-71)f f fS( ~d
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where

fS (T,O) = RS (T,O)/K (2.3-72)

is the normalized scattering function. The quantity f S (T,O) has the

properties of a density function since both the scattering function and

the constant K are real, positive quantities, and fS(T,O) integrates

to one. As a result, a WSSUS channel can be characterized, at least to

a certain extent, by calculating the first and second moments of both

12the round-trip time delay T and frequency spread . The mean

round-trip time delay pT can therefore be computed from:

PT fI Tfs(T)dT (2.3-73)

where

fS(T) = f fs(T,')dO (2.3-74)

can be interpreted as being the marginal density function of the round-

trip time delay variable T . An alternate expression for fs(T) can

be obtained by ref-rring back to Equation (2.3-35) and setting At = 0

Doing so yields:

fS(T) = Rh(T,0)/K , (2.3-75)

where

Rh(T,O) = E{jh(T,t)j2 = f RS(T, )dO (2.3-76)
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is referred to as the power impulse response and is the distribution

of power as a function of T only.7 ,1 5 Note that f s(T) integrates

to one. The mean-square time delay spread a.2 is given by:T

2 2 2 (2.3-77)o2 (2) _

TT

where

(T2 f T 2f (T)dT (2.3-78)

Similarly, the mean value of the frequency spread i can be

computed from:

f f fs (O)do 
(2.3-79)

where

fs( f f fS(T' )dT (2.3-80)

.Wc

can be interpreted as being the marginal density function of the

frequency spread variable 0 . An alternate expression for fs)

can also be obtained by referring back to Equation (2.3-37) and

setting Af = 0 . Doing so yields:

f s() RB(,)/K (2.3-81)

where

RB(O,0) = E{IB(fO)f2} f0 Rs(T,O)dT (2.3-82)
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is referred to as the echo power spectrum and is the distribution of

power as a function of c only. 7 ,1 5  Note that f () integrates to

one. The mean-square frequency spread a 2is given by:

2 (4 2 )k 2  
(2.3-83)

where

00

2 f 2, 2f(~d (2.3-84)
-00

Scattering functions are frequently concentrated in a finite

area of the T- plane. 12They occupy a certain band of frequencies

along the c axis and/or a band of time delays along the T axis.

If we refer to the band of frequencies as bandwidth B (in Hz) and

the band of time delays as length L (in sec), then these two

parameters provide an alternate way of describing the scattering

function, and hence, the channel. For example, an underspread channel

is defined as one whose BL product is less than one, i.e., BL < 1

and an overspread channel is defined as one whose BL product is

greater than one, i.e., BL > 1 .5,21

In order to avoid frequency spreading, it is required that:

1/T >> B $ (2.3-85)

where T is the duration of the transmit signal and l/T is a measure

of its Doppler resolution. 5 ,1 2  Similarly, in order to avoid spreading

in round-trip time delay (range), it is required that:

1/W >> L ,(2.3-86)
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where W is the bandwidth of the transmit signal and 1/W is a

measure of its range resolution.5 ,1 2  If Equations (2.3-85) and

(2.3-86) are multiplied together, then,

l/TW >>> BL (2.3-87)

which is the requirement for avoiding both range and frequency

spreading. Since, for any real bandpass transmit signal, the time-

bandwidth product TW is equal to or greater than one,12,30 i.e.,

TW > 1 , (2.3-88)

Equation (2.3-87) can only be satisfied for underspread channels.

Equation (2.3-88) is based upon the equivalent rectangular duration T

(see) and bandwidth W(Hz) of the transmit signal. 30 Although

Equation (2.3-87) cannot be satisfied for overspread channels, one can

choose a transmit signal such that either range or frequency spreading

is avoided, but not both.



CHAPTER III

DETECTION IN THE PRESENCE OF REVERBERATION

3.1 Introduction

The purpose of this chapter is threefold: (1) to specify the

binary hypothesis testing problem to be considered in this dissertation,

(2) to indicate the receiver structure which will be used to process the

received signal, and (3) to introduce the important concept of the

output signal-to-interference power ratio.

This chapter begins with a brief discussion of the complex

envelope notation for bandpass signals since the hypothesis testing

problem will be formulated in terms of the complex envelopes of the

target, reverberation, and noise signals. The target and reverberation

returns are modelled as the outputs from linear, time-varying, random

filters which are assumed to be WSSUS communication channels.

The particular receiver structure used is a correlator followed

by a magnitude squared operation. The magnitude squared output from

the correlator is tested against a threshold which is determined from

a probability of false alarm constraint in a Neyman-Pearson test.

Having specified both the binary hypothesis testing problem and

the receiver, the signal-to-interference ratio (SIR) is derived for a

doubly spread target and is shown to be dependent upon the target and

reverberation scattering functions and the cross-ambiguity function of

the transmit signal and the processing waveform, which is used in the

correlator receiver. It is also demonstrated that the SIR for a slowly

fluctuating point target can be obtained from the general SIR expression

for a doubly spread target.
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The final discussion in this chapter is devoted to the question

of receiver optimality, i.e., when is our choice of receiver an optimum

or sub-optimum receiver for detecting either a slowly fluctuating point

target or a doubly spread target. The discussion on optimality intro-

duces the performance measure A which is shown to be equal to the SIR.

The performance measure determines the probability of detection for a

given probability of false alarm in the important case of Gaussian

statistics. Maximizing A is equivalent to maximizing the probability

of detection and it is noted that this can be achieved by proper signal

design.

3.2 A Binary Hypothesis Testing Problem

3.2.1 Complex envelope notation. Before discussing the

underwater acoustic detection problem, the complex envelope notation

for bandpass signals will be introduced and discussed briefly since it

will be used extensively throughout the remainder of this dissertation.

Consider an arbitrary real bandpass signal g(t) whose amplitude

spectrum IG(f)1 is concentrated about f = +f and f = -f Hz . Thec c

complex envelope of g(t) , denoted by g(t) , is a complex signal whose

amplitude spectrum IG(f)l is centered about f - 0 Hz. The relation-

ship between g(t) and g(t) is given by (e.g., see Whalen 6):

g(t) = Re {g(t)exp(+j2fct)} , (3.2-1)

where

j(t) - [g(t) + jg(t)]exp(-j2Tf t) (3.2-la)c

where Re means "take the real part" and 9(t) is the Hilbert

transform of g(t)
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In Chapter II, no distinctions were made as to whether the input

and output signals x(t) and y(t) , respectively, and the time-varying

impulse response h(T,t) were real versus complex or lowpass versus

bandpass. Since for most communication and detection problems (in

particular, the detection problem to be discussed here) x(t) , y(t)

and h(T,t) are bandpass waveforms, it is more convenient analytically

to work with their respective complex envelopes. They are denoted by

x(t) , y(t) , and E(T,t) and are related to their real counterparts

by:12,16

x(t) = Re{k(t)exp(+j2lTf t)} , (3.2-2)

c

y(t) = Re{y(t)exp(+j2wfct) (3.2-3)

and

h(T,t) = Re{2h(T,t)exp(+j27rf cT)} (3.2-4)

where (see Kailath )

h(t,t) = [h(T,t) + jR(T,t)]exp(-j2Tf CT) (3.2-4a)

and

1(,h(=t)
=(rt dE (3.2-4b)

We will now derive two different relationships between the input

and output complex envelopes. The first relationship will be approx-

imate while the second will be exact. Starting with Equation (2.2-25),

i.e.,

y(t) = x(t - T)h(T,t)dT ,(2.2-25)

where it is assumed that x(t) , y(t) , and h(T,t) are real signals,

and using Equations (3.2-2) through (3.2-4) in conjunction with the

identity
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Re{Z} (Z + Z )/2 , (3.2-5)

where Z is some arbitrary complex quantity, it can be shown that
16

00
(t f 00 (t- T)K(T,t)dT

+ f x(t - T)F*i(T,t)exp[-j2Tr(2fc)T]dT . (3.2-6)

If it is assumed that both x(t) and h(T,t) are narrowband bandpass

signals, then, x(t - T) and (T,t) will be slowly varying functions

of T . Therefore, the second integral appearing in Equation (3.2-6)

will be approximately equal to zero, and as a result,
12'1 6

(t) f 00 (t - T)R(T,t)dT (3.2-7)

which is identical in form with Equation (.2-25). Although Equation

(3.2-7) is an approximate relationship based upon a narrowband assump-

tion, this does not mean to imply that the concept of a complex envelope

applies to narrowband bandpass signals only. Complex envelopes can be

4
defined and used for wide-band bandpass signals, also. In fact, the

next relationship which will be derived is exact and does not involve

a narrowband assumption.

Once again, assume that x(t) , y(t) , and h(T,t) are real

signals. Using Equations (3.2-2) and (3.2-5), the real input signal

x(t) can be expressed as:

x(t) = [x(t)exp(+j2Tfct) + R (t)exp(-j2Tf ct)]/2

(3.2-8)
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Taking the Fourier transform of both sides of Equation (3.2-8) yields:

~*

X(f) = [X(f - f C) + X (-f - fc)]/2 (3.2-9)

since

s(t)exp(+j2lTf ct) *- X(f - f ) (3.2-10)C t C

and

x*( ) X (-f) , (3.2-li)t

where

xt) , X f ( 3 . 2 - 1 2 )

Substituting Equation (3.2-,) into Equation (2.2-38), i.e.,

y(t) = X(f)H(f,t)exp(+j2Trft)df (2.2-38)

yields

y(t) - (1/2) i(f)H(f + fct)

* exp(+j27ft)dfexp(+j2Tf t)

+ 1(1/2) R (f)H*(-[f + f C,t)

exp(+j2Trft)dfexp(+j27Tfct)} (3.2-13)

Since

h(T,t) ,(f,t) (2.2-12)
T



55

where h(T,t) is a real function, then,

H (-Lf + f ],t) = H(f + f ,t) (3.2-14)C C

and upon substituting Equation (3.2-14) into Equation (3.2-13), we

obtain:

y(t) = Re { (t)exp(+j2rf t)} , (3.2-3)C

where
00

y(t) X(f)H(f + f ,t)exp(+j2 ft)df (3.2-15)

Equation (3.2-15) is the desired result which relates the output

complex envelope y(t) to the spectrum of the input complex envelope

10X(f) (e.g., see Ishimaru ). Equation (3.2-15) is an exact relation-

ship and no narrowband assumption was made.

An interesting interpretation of H(f,t) can be obtained from

Equation (3.2-15). Assume that a cosinusoidal signal is transmitted,

i.e.,

x(t) = cos(27f ct) = Refl exp(+j27f ct)} , (3.2-16)

so that the complex envelope i(t) = 1 . As a result, the spectrum

k(f) = 6(f) , and if this result is substituted into Equation (3.2-15),

we obtain:

y(t) - H(f ,t) (3.2-17)c

or

y(t) = Re{H(f ,t)exp(+j2nf ct)} (3.2-18)
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Thus, the time-varying frequency response H(f,t) is the complex

envelope of the response of the channel to x(t) = Re{exp(+j27ft)}.

If y(t) is a random process, then a more appropriate

characterization of the output complex envelope is provided by the

autocorrelation function

R~(t,t') E{y(t)y*(t')} (3.2-19)

y

Substituting Equation (3.2-15) into Equation (3.2-19) and performing

the indicated operations yields:

00

"lotttR ) f fC j (f)R*(f')R H(f + fc'f' + fct't')

• exp[+j27T(ft - f't')Idfdf' , (3.2-20)

where

RCf + fc ,f' + fc 'tt') = E{H(f + f ,t)H (f' + f ,t')}
RHf+ fc c c c

(3.2-21)

If the linear, time-varying, random filter is a WSSUS channel, then

Equation (3.2-20) reduces to [see Equation (2.3-31)]:

R (t,t') f .J J(f)R*(f.)R H(A.fAt)
. exp[+j2n(ft - f't')]dfdf' , (3.2-22)

where f = f - f' and At = t - t' . Note that the form of Equations

(3.2-22) and (2.3-65) are identical. And upon substituting Equation

(2.3-32) into Equation (3.2-22), one obtains:
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R (t,t') ; f (t - T)Rs( , (t' -T)

exp (+j 2Tr4At) dTd , (3.2-23)

where At = t - t' Note that the form of Equations (3.2-23) and

(2.3-55) are also identical. Using Equation (3.2-23) and following

the development between Equations (2.3-55) and (2.3-62), it can also

be shown that the average energy of the output complex envelope E

is given by [compare with Equation (2.3-61)]:

00

E =E f f R S(T, )dTd (3.2-24)

where

I r
E = R (t,t)dt (3.2-25)

and

E = f Ix(t)1 2dt • (3.2-26)

And finally, the autocorrelation function of the real output

R (tt') can be obtained from R (t,t') by using the following

approximate relationship:

R (t,t') (1/2) RetR (t,t )exp[+j2Tf c(t - t')]}y ~

(3.2-27)
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3.2.2 The signal-to-interference ratio for a doubly spread

target. The detection problem to be considered in this dissertation

is the following binary hypothesis testing problem:

H 1: (t) + (t)+(t) + ?i(t) -0 < t < 00 (3.2-28)1 TRGT REV

H : i(t) = j(t) +(t) - < t < C (3.2-29)

0 REV

where

CO

(t) (t - T)fi(T,t)dT (3.2-30)
TRGT 00 TRGT

or

y(t) = J X(f)H(f + ft)exp(+j27Tft)df (3.2-30a)TRGT 0 TRGT

and

y(t - T)fi(T,t)dT (3.2-31)
REV J fREV

or

t)= X(f)H(f + f ,t)exp(+j2nft)df (3.2-31a)
REV REV c

Both the target and the reverberation are being modelled as linear,

time-varying, random filters.1 2 The approach of treating the ocean

medium as a linear, time-varying, random communication channel is

well-established (e.g., see References 4, 5, 7, 10, 12, 17, 18). This

method has also been applied to problems in radar astronomy and

communication channels in general. 8,11,15

Hypothesis H states that the complex envelope of the received

signal i(t) is equal to the sum of the target return y(t) , the
TRGT
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reverberation return '(t) , and noise n(t) . The noise is assumed to
REV

be zero mean, white, and uncorrelated with both the target and

reverberation returns. It is also assumed that both y(t) and Y(t)
TRGT REV

are zero mean and uncorrelated with one another. Hypothesis H states
0

that i(t) is equal to the sum of the reverberation return and noise.

The reverberation return, in general, is a composite of volume,

surface, and bottom reverberation returns.

The particular receiver structure which will be used in this

dissertation to process i(t) is illustrated in Figure 6. The

function j(t) is to be referred to as the "processing waveform," as

yet unspecified. The receiver performs the following test: choose

hypothesis H if:

S (t)g(t)dt I > y (3.2-32)

and choose H otherwise. The threshold y is chosen to satisfy the0

desired probability of false alarm constraint in a Neyman-Pearson

test.

Any discussion concerning the optimality of the receiver

illustrated in Figure 6, and hence, the test indicated by Equation

(3.2-32), will be deferred until Section 3.3.

Let us now compute the output signal-to-interference power

ratio (SIR) for the receiver shown in Figure 6. The SIR as used in

this dissertation is defined as:

SIR E G / E III , (3.2-33)
YTRGT

I
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00 2 H(t) t 1
dt >

H0

g 6(t

Figure 6. Receiver structure for processing (t)

t --
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where 00

j y(t) g*(t)dt (3.2-34)

YTRGT -.0 TRGT

= fJ 0 (t)* j(t)dt (3.2-35)

and

(t) = ,(t) + n(t) (3.2-36)
REV

Using Equations (3.2-34) through (3.2-36), it can be shown that:

E { = g*(t)R~ (t,t')(t')dtdt' (3.2-37)

TRGT --o YTRGT

and

} = 0 (t )R (tt')i(t')dtdt' 
, (3.2-38)

where

R (t,t') f R (t,t') + N 6(t - t') (3.2-39)~ 0
VYREV

where N is the spectral height of the complex white noise n(t)0

Substituting Equation (3.2-39) into Equation (3.2-38) yields:

2 CoooE j fi *J(t)R (tt')i(t')dtdt' + N 0  (t) 2 dt

-{Co YREV -(

(3.2-40)

Now, if it is further assumed that the linear, time-varying, random

filters which represent the target and the reverberation are WSSUS
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communication channels, then the form of Equation (3.2-23) is applic-

able for the autocorrelation functions R (t,t') and R (t,t')
YTRGT YREV

Therefore, with the use of Equation (3.2-23), Equations (3.2-37) and

(3.2-40) can be rewritten as:

E ~ 1} = J J R(TO) X (T,O) dd (3.2-41)

YTRGT j 0 TRGT xg

and

E {l1 2} = Rs(;4 O) IX(,)Idd + N 0 flg(t)I2dt

(3.2-42)

- where

xg (o o i(t - 2))g*(t + )exp(+j20rt)dt (3.2-43)
xg

is the cross-ambiguity function of the complex envelope of the

transmit signal i(t) , and the complex envelope of the processing

waveform g(t) . The expressions R S(T,O) and R (T, ) are the
TRGT REV

target and reverberation scattering functions, respectively.

Substituting Equations (3.2-41) and (3.2-42) into Equation (3.2-33)

yields:

_0 STRGT xg

SIR - _

f f R 5(T,p) IX_(T,cp)J2 dTdO + N 0 j(t)j2 dt
, REV xg o

(3.2-44)
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which is the output signal-to-interference power ratio for a doubly

spread target. The term "doubly spread target" is used because of the

appearance of the target scattering function R (T,4) which implies
STRGT

that the target return y(t) will exhibit a spread in both round-trip
TRGT

time delay T and frequency d . The SIR is almost always defined for

19a slowly fluctuating point target in the literature. More will be

said about the SIR for a slowly fluctuating point target in the next

section. It is important to note that no Gaussian assumptions were

made in the derivation of Equation (3.2-44).

The SIR expression for a doubly spread target as given by

Equation (3.2-44) can also be obtained in a different way. This can

be demonstrated by first defining the quantity A as follows:

A E f 2 (3.2-45)

E {22IH}

where under hypothesis H1

+ (3.2-46)

YTRGT

and under hypothesis H 00

(3.2-47)

where 2 and 1 are given by Equations (3.2-34) and (3.2-35),

YTRGT V

respectively. Now, if we make the same assumptions as before, i.e.,

that y(t) , y(t) , and n(t) are zero mean and uncorrelated with
TRGT REV

one another, and in addition, that a(t) is white, then, substituting

~ -1



64

Equations (3.2-46) and (3.2-47) into Equation (3.2-45), and performing

the indicated operations yields:

A = E fI% 121 / E {I 2} . SIR (3.2-48)

which is equal to the SIR definition given by Equation (3.2-33), and

as a result, A is also equal to Equation (3.2-44). Once again, note

that no Gaussian assumptions were made in the derivation of Equation

(3.2-48). More will be said about the definition of A , as given by

Equation (3.2-45), in Section 3.3.

The majority of the remaining analysis to appear in this

dissertation will be centered around the SIR expression for a doubly

spread target as given by Equation (3.2-44). However, for complete-

ness, it will be demonstrated in the next section that the more common

SIR expression for a slowly fluctuating point target can be obtained

from the general SIR expression given by Equation (3.2-44). Besides,

the point target problem is important in its own right.

3.2.3 The signal-to-interference ratio for a slowly fluctuating.

point target. The properties of a slowly fluctuating point target are
12

as follows: (1) It is the simplest model of a target. (2) It is

assumed that the target characteristics, although random, are fixed

(constant) during the time interval that it is being insonified by the

transmit pulse. However, the target characteristics do change from

time interval to time interval. Therefore, the transmit signal will

acquire a random attenuation and a random phase shift. Since both the

attenuation and phase shift are essentially constant over the time
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interval of insonification, they can be modelled as random variables.

And finally, (3) it is assumed that neither a range spread nor a
15

Doppler spread is discernible in the target return.

The target return from a slowly fluctuating point target is

modelled as a time and frequency shifted replica of the transmit

complex envelope, i.e.,

y(t) - ti(t - tV)exp(+j2Tr't) , (3.2-49)
TRGT

where B is assumed to be a zero mean complex Gaussian random variable

which accounts for random attenuation and random phase shift.12 The

magnitude of S , I , is assumed to be Rayleigh distributed and the

phase of E is assumed to be uniform. Thus, the magnitude and phase

are statistically independent random variables. it is also assumed

that the target is moving with a constant radial velocity.

The scattering function for a slowly fluctuating point target

15
can be expressed as:

RS(T,) E' - ltS(F' - ¢) . (3.2-50)
TRGT

The quantity E{1I 2} includes the array gains, propagation losses,
12

and radar (sonar) cross-section of the target.

The SIR for a slowly fluctuating point target can now be obtained

by substituting Equation (3.2-50) into Equation (3.2-44). Doing so

yields the desired result (e.g., see DeLong and Hofstetter ):
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E{lIj 2} iX~(T',$*')J 2

SIR - xgJJR5C,)I (t IdTd + N ,~(t), 2 dt
f-OfSREV xg0

(3.2-51)

DeLong and Hofstetter19 assumed that T' f P' = 0 in their expression

for the SIR for a point target. If these values for T' and 4' are

substituted into Equation (3.2-51), then,

(I X 0(t) (t)dt2 (3.2-52)

which agrees with their result.

3.3 Optimum and Sub-Optimum Receivers

3.3.1 Optimum receivers for detecting a slowly fluctuating

point target. In this section, we will discuss two cases when the

receiver illustrated in Figure 6, and hence, the test given by

Equation (3.2-32) is in fact optimal for detecting a slowly fluctuating

point target. The first case is concerned with the detection of a point

target return in the presence of white noise only. The second case is

concerned with the detection of a point target return in the presence of

both reverberation and white noise.

Consider the simple case when there is no reverberation present,

i.e., Y(t) = 0 . Assume that a(t) is Gaussian, zero mean, and white
REV

and that the target return is given by Equation (3.2-49). Recall that

i(t) as specified by Equation (3.2-49) is also Gaussian and zero mean.
TRGT
Let us further assume that j(t) and n(t) are uncorrelated

TRGT
(statistically independent because of Gaussian statistics) and that
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T' and 0' are known constants. If we process i(t) by a matched

filter designed for the presence of white noise only and matched to

s(t) = i(t - T')exp(+j270't) , (3.3-1)

then, the processing waveform i(t) is given by:

j(t) = s(t) = iE(t - T')exp(+j27r't) (3.3-2)

and the test indicated by Equation (3.2-32) is optimal. It is, in fact,

the log-likelihood ratio test for detecting signals with random

amplitude and phase, where 1 12 is the test statistic. 12'16 This

case is also known as slow Rayleigh fading.
16

Let us next compute the SIR for this receiver. If Equation

(3.3-2) is substituted into Equation (3.2-43), then it can be shown

that:

IX 2 = E 2 (3.3-3)

where

E f I(t) 12dt (3.3-4)

--C

is the energy of the complex envelope of the transmit signal. Also,

note that:

00 j(t)j
2dt = E (3.3-5)

when i(t) is given by Equation (3.3-2). Since it was assumed that

y(t) = 0 , then R (T, ) - 0 , and if Equations (3.3-3) and (3.3-5) are
REV REV
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substituted into Equation (3.2-51), then the general expression for

the SIR for a slowly fluctuating point target reduces to:

SIR = E / N , (3.3-6)
- 0
YTRGT

where

= E{SI1 2}E~ (3.3-7)

YTRGT x

is the average return energy from the point target. Equation (3.3-7)

can easily be verified by substituting Equation (3.2-50) into Equatic.-

(3.2-24).

The error performance of this receiver is completely determined

by Equation (3.3-6) since the probability of detection PD for a given

probability of false alarm PF is given by:12'16

I
PD =  F (3.3-8)

where

A SIR f E /N (3.3-9)
0

YTRGT

It is obvious from Equation (3.3-8) that in order to increase the

probability of detection for a given probability of false alarm, one

must maximize A (SIR) , i.e., as A - - , PD - 1 for PF constant.

In this case, it can be seen from Equations (3.3-7) and (3.3-9) that

A (SIR) can be maximized by simply increasing the transmit energy E
i

Recall that when A was originally defined by Equation (3.2-45),

it was not given any specific name, although it was shown to be equal
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to the SIR as defined by Equation (3.2-33) when the same set of

assumptions were used with both definitions. When y(t) , (t) and
TRGT REV

n(t) arc Gaussian, zero-mean, and uncorrelated (statistically

independent) with one another, and n(t) is white; then A as speci-

fied by Equations (3.2-45) through (3.2-47) is referred to as the

performance measure of the receiver illustrated in Figure 6 by Van

Trees12 since the error performance of this receiver (whether it is

optimal or not) is given by:

SD = PF(+) (3.3-8)

Therefore, in the important case of Gaussian statistics, maximizing

the SIR (A) is equivalent to maximizing the probability of detection

for a given probability of false alarm in a Neyman-Pearson test.20

The second case to be considered in this section is the detection

of a slowly fluctuating point target return in the presence of both

reverberation and noise. Let us make the same assumptions that were

made in the first case, and in addition, let us also assume that the

reverberation return y(t) is Gaussian, zero-mean, and uncorrelated
REV

(statistically independent) with both y(t) and n(t) . Then, with
TRGT

the above assumptions, the test given by Equation (3.2-32) is optimal

if the processing waveform g(t) satisfies the following integral

equation:
1 2

R (t,t')g(t')dt' + Ng(t) ;s(0) -C ( < t < 30
CO YREV (3.3-10)
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where

s(t) x(t - T')exp(+j27T4't) (3.3-1)

and T' and c' are assumed to be known constants as before. The

receiver specified by Equations (3.2-32) and (3.3-10) is the optimal,

maximum likelihood receiver for detecting a slowly fluctuating point

target return in the presence of colored Gaussian noise. The

specification of i(t) as the solution of Equation (3.3-10) is

equivalent to processing i(t) with a matched filter designed for

colored noise and matched to i(t)

Because of the assumption of Gaussian statistics, the error

performance of this receiver is given by Equation (3.3-8), where the

performance measure A is equal to:

EtI I 2}  I _,O ) 2

xg

A = SIR

.1 f~d R (T~f) IX (T,0t)12 d +N0f li(t)I2 dt
SREV og

(3.2-51)

Note that in the presence of reverberation, the performance measure

(SIR) given by Equation (3.2-51) is dependent upon the shape of ;E(t)

via the cross-ambiguity function X (T,O) . Since reverberation is

caused by the scatteririg of the transmit signal, Equation (3.2-51)

cannot be maximized by arbitrarily increasing the transmit energy.

Increasing the transmit energy will increase both the target and

reverberation returns. However, A can be maximized by proper

signal design via X (T,p)
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3.3.2 Sub-optimum receiver for detecting a slowly fluctuating

point target. In this section, we will consider the problem of detect-

ing a slowly fluctuating point target return in the presence of both

reverberation and noise by processing r(t) with i(t) as given by

Equation (3.3-2). This is equivalent to using a matched filter which

was designed for white noise only, to detect a point target return in

colored noise.

If we make the usual assumptions regarding y(t) , t , and
TRGT REV

n(t) (including Gaussian statistics) as was done in the previous

section, then it is clear that the test given by Equation (3.2-32) will

not be optimal for our choice of i(t) ; namely, g(t) as given by

Equation (3.3-2). However, because of the assumption of Gaussian

statistics, the error performance of this sub-optimum receiver can be

computed and is given by Equation (3.3-8), where an expression for A

which reflects our choice for g(t) will be obtained next.

If Equation (3.3-2) is substituted into Equation (3.2-43), then

it can be shown that:

lxr(T,)I 2 _ IX (T' - T, -,')12 (3.3-11)
xg x

where

X(T,) f x(t)ix(t - T)exp(+j27T t)dt (3.3-12)

is the auto-ambiguity function of the transmit complex envelope x(t)

Substituting Equations (3.3-3), (3.3-5), and (3.3-11) into Equation

(3.2-51) yields the desired result (e.g., see Van Trees 2):
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E{ ISI 12
A = SIR =

Jf R(t4I (T - ,)12 dTd + (N /E)
REV x x

(3.3-13)

or

E{IS121
A = SIR = ,(3.3-14)

RSp *) * *p 1(r,-) 12 + (N /E_)
REV x x

where the double asterisk means perform a two-dimensional convolution,

and

(T,)= X~ (T,)/E (3.3-15)x x x

is the normalized auto-ambiguity function such that 14 (0,0)1 = 1
x

Although g(t) as given by Equation (3.3-2) is not the optimal

processing waveform to use in this case, it does have its advantages.

As Van Trees 1 2 indicates, (1) it is simpler than the optimum i(t)

which is the solution of Equation (3.3-10), and (2) the autocorrelation

function of the reverberation return R-(t,t') may not be known
YREV

exactly a priori, so that the optimum solution for i(t) cannot be

obtained anyway, Besides, since the performance measure A of the

sub-optimum receiver is known [see Equation (3.3-13)], it can be

maximized by proper signal design. For example, suppose that i(t)

was designed in such a way that the two-dimensional convolution integral

appearing in Equation (3.3-13) was minimized. Then, A would approach
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Equation (3.3-9), which would be 
the maximum value that A could

attain in this case.

It is worth mentioning that, although R (t,t') may not be

YREV

known exactly a priori, it can be learned in real time by using an

appropriate adaptive signal processing scheme. Therefore, it is

theoretically possible then to solve for the optimum i(t) in real

time.

3.3.3 Sub-optimum receiver for detecting a doubly spread target.

The receiver illustrated in Figure 6 is not an optimal receiver for
12

detecting a doubly spread target. However, if the usual assumptions

are made, i.e., that y(t) , y(t) , and n(t) are Gaussian, zero-mean,
TRGT REV

and uncorrelated (statistically independent) with one another, and

that a(t) is white, then, the error performance of this sub-optimum

receiver in detecting a doubly spread target is known and is given by:

P P/(l+) (3.3-8)

where

TRGT xg

A = SIR 0

REV xg O -O

(3.2-44)

As was mentioned previously, the use of a sub-optimum receiver

is not necessarily a hindrance since the performance measure, as given
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by Equation (3.2-44), can be maximized by proper design of both i(t)

and g(t) . And when A is maximized, the probability of detection

is maximized.

DeLong and Hofstetter 19 suggest that using the receiver

illustrated in Figure 6 and designing i(t) and g(t) so that the

SIR is maximized may well be a reasonable thing to do even in the case

of non-Gaussian statistics. Of course, in the case of non-Gaussian

statistics, the error performance of the receiver is no longer given

by Equation (3.3-8).
12

It should be mentioned that Van Trees gives a discussion on

the optimum receiver to use for detecting a doubly spread target when

i(t) = 0 . In addition, a discussion on the detection of doubly
REV
spread radar astronomy targets is given by Price.21

From Equation (3.2-44), it can be seen that in order to maximize

the SIR for a doubly spread target, one must be able to specify both

the target and reverberation scattering functions. In general, the

reverberation return is a composite of volume, surface, and bottom

reverberation returns. However, only two kinds of reverberation will

be considered in this dissertation; namely, volume and surface

reverberation. In Chapter IV, both a volume reverberation and target

scattering function will be derived, and in Chapter V, a surface

reverberation scattering function will be derived.



CHAPTER IV

VOLUME REVERBERATION AND TARGET SCATTERING FUNCTIONS

4.1 Introduction

Both the volume reverberation and target scattering functions

are derived in this chapter.

Volume reverberation is modelled as the scattered acoustic

pressure field from randomly distributed discrete point scatterers in

deterministic plus random translational motion. The point scatterers

are distributed in space according to an arbitrary volume density

function with dimensions of number of scatterers per unit volume.

The autocorrelation function of the random, time-varying

transfer function representing the volume reverberation communication

channel is derived for a bistatic transmit/receive planar array

geometry. A single scattering approximation is used and frequency

dependent attenuation of sound pressure amplitude due to absorption

is included. The scattered fields from different regions within the

scattering volume are assumed to be uncorrelated. The volume rever-

beration scattering function is then obtained from the autocorrelation

function via a two-dimensional Fourier transformation. The probability

density function of random Doppler shift due to the random motion of

the scatterers is also derived. In addition, an expression for the

average received energy from volume reverberation is computed from the

volume reverberation scattering function. Using several simplifying
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assumptions, it is shown to reduce to the sonar equation for

reverberation level.

The doubly spread target is modelled as a linear array of

discrete highlights in deterministic translational motion. Recall

that a doubly spread target is one whose return signal exhibits a

spread in both round-trip time delay and Doppler. The target scatter-

ing function is obtained from the monostatic form of the volume

reverberation scattering function by appropriately specifying the

volume density function of the scatterers.

Computer simulation results for both volume reverberation and

target scattering functions are presented as examples involving a

monostatic transmit/receive array geometry. The volume reverberation

scattering function predicts frequency spreading as a function of both

f beam tilt angle and random motion of the discrete point scatterers.

Also predicted is a time spread and/or contraction as a function of

Doppler shift. The target scattering function also predicts a spread

in Doppler values and a time spread and/or contraction as a function

of Doppler shift. Computer plots of the probability density function

of the random Doppler shift are also presented for a monostatic

geometry as a function of the standard deviation of the random motion

of the scatterers.

4.2 Volume Reverberation Scattering Function

In order to derive a mathematical expression for the volume

reverberation scattering function R S(r,O) , the corresponding

REV
time-frequency correlation function RAf,At) will be computed first.

The scattering function will then be obtained from R, (f,At) via



77

the two-dimensional Fourier transform relationship given by Equation

(2.3-51).

Volume reverberation is a result of the scattering of energy by

the inherent inhomogeneities in the ocean medium (e.g., fish, bubbles,

zooplankton, etc.) and its changing index of refraction.17,22 In the

analysis which follows, volume reverberation will be represented as the

scattered field from a random distribution of discrete point scatterers

which are distributed in space according to an arbitrary volume density

10
function. It is assumed that the particles are undergoing transla-

tional motion. A single scattering approximation is used throughout

the analysis.

We begin by considering the physical situation depicted by Figure

7 and computing the scattered field at the receive array due to a single

particle. Note that both the transmit and receive planar arrays are in

a bistatic configuration and both are assumed not to be in motion. When

transmission in the direction nT begins at t =0 , the range of the

particle from the transmit array in the direction nT is equal to R

Similarly, the range of the particle from the receive array in the

direction -nR at t = 0 is equal to R Both nT and ^ are

unit vectors. The particle's motion is described by the time-varying

translational velocity vector V(t) . Therefore, the range of the

particle from the transmit array at any time t ,in the direction nT

is given by:

t 4.
RT(t) RO + V(t) fi Tdt (4.2-1)

0
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Figure 7. Geometry for calculation of scattered field from

a single particle undergoing translational motion.
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and, similarly, the range of the particle from the receive array at any

time t , in the direction -k , is:
t

RR(t) = R°R + J V(t) * (-nR) dt (4.2-2)

0

Assume that a unit amplitude, time-harmonic signal is transmitted and

that the moving particle is in the far-field region of both the transmit

and receive arrays. At some time instant, say t = tI , the time-

harmonic signal transmitted in the direction nT is incident upon the

particle and some power is scattered towards the receive array in the

direction R . The scattered acoustic pressure field begins to appear

at the output of the receive array at time tI , where

= .(tlj)
tl t! + , (4.2-3)

where c is the speed of sound (in m/see) in the medium and is assumed

to be constant. The output at time t is given by [see Equation

(3.2-18)];

y(t = Re {H(f,tl)exp(+j2rft )} (4.2-4)

where

H(f,t) = D T(k xTk T )g(R nTf)DR(k)xR yR

exp [-jkRT (t') ]
T T 1T~C

exp[p[-akRTRTtj)]

exp(-jkR R(t)]
RR(ti) exp[-oLR(f)RR(t')] (4.2-5)
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when the transmit signal x(t) Re{exp(+j27rft)}

Equation (4.2-5) is the random, time-varying, transfer function

of the communication channel corresponding to the physical situation of

a single particle in translational motion for a bistatic transmit/receive

array configuration. The term j V'_ and t' is the retarded time1

given by:

t?= t R R(t) (4.2-6)
1 1 c

The expressions DT  and DR  are the far-field directivity patterns of

the transmit and receive arrays, respectively. The far-field directivity

pattern of an acoustic planar array is given by the two-dimensional

Fourier transform of the spatial distribution of normal driving velocity,

say v(x,y) ; i.e.,

D(,k) = v(x,y)exp[+J(k x + k y)] dxdy (4.2-7)

R

when the baffle surrounding the active region R is assumed to be

23
rigid. The far-field radiated acoustic pressure field at a point

(x,y,z) with corresponding spherical coordinates (r,e,*) is (see

23
Morse and Ingard2):

p(x,y,z) = JP0 fD(kx,k )exp(-jkr)/r
0 y

2 2 2 1/2
where r = (x + y + z ) , PO is the ambient density of the medium

and the x and y components of the wave number k are given by:
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k = k sine cosi = ku (4.2-8)x

and

k ff= k sine sinW = kv (4.2-9)Y

where

k .2Tf 27T (4.2-10)c A

The terms u = sine cos and v = sine sin are the direction cosines

with respect to the positive x and y axes, respectively. Note that

Equation (4.2-7) is also a valid expression for (1) the far-field

directivity pattern of an electromagnetic planar array (antenna) when
24

v(x,y) corresponds to a two-dimensional current distribution, and

(2) the Fraunhofer diffraction pattern of an aperture distribution

v(x,y) in optics. 25 ,2 6 The expressions aT and aR are the frequency

dependent amplitude attenuation coefficients due to sound absorption,

with units of nepers/meter, along the transmit and receive paths,

respectively.

The function g(nR nTf) is referred to as the scattering

amplitude function. 10 It represents the random far-field amplitude of

the scattered wave in the direction nR when the particle is illumin-

ated (insonified) by a unit amplitude plane wave propagating in the

direction nT Thus, at large distances from the particle,10,
23

k ^ 2 n R Vi
g~fnR~fnr~f) = J [YK(ro)P( o) + jy -(r VP()]

V
0

exp(+jkfiR • ro) dV°  , (4.2-11)

where YK(r) = [KeC( ) K0I/K and YQ('r 0) - Pol/pe(r )

The particle occupies a volume V 0 where K eand e are the

1 "I ' -
"

- " ' 0 e ' -
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compressibility and density, respectively, inside the particle, and

K and p are the compressibility and density of the surrounding

medium. The term p(r ) is the actual pressure field within V0

Depending upon the physical situation, Equation (4.2-11) can be

simplified by using the Rayleigh, Born, or WKB approximation.
10

In order to simplify Equation (4.2-5), assume that the velocity

of the particle is constant during the time it is insonified, i.e.,

V(t) = V and that

tl

R oT  >> f V(t) • nr dt (4.2-12)

0

and
ti

Rol0 >> f V(t) ° (-fR) t (4.2-13)

0

Also assume that a T(f) = aR (f) = a(f) . Therefore, upon using these

assumptions [Equations (4.2-12) and (4.2-13) are only used in simplify-

ing the denominator], Equation (4.2-5) reduces to:

exp {-JkEFF [RoT + RR + ( -T - R ) " Vt!1}

H(f,tl) = F(f) R R
0T 0R

(4.2-14)

where

t = c , (4.2-15)

F(f) D (k ,k )g(fa f)DR( ,k R ) (4.2-16)



83

and kEFF is th- complex effective wave number defined by:

k = k - Jc(f) = -- j c(f) (4.2-17)
EFF c

Next, consider the problem of calculating H(f,t) when several

moving particles occupy an elemental volume dV . The problem is

illustrated in Figure 8 where it has been assumed that only three

particles occupy dV for example purposes. Assuming that the

transmission and scattering processes are linear, the principle of

superposition is used to express the complex envelope of the output

field (reverberation return) as:

HR ;,tl) = H1 (f,t 1 ) + H2 (f,t1 ) + H3 (f,t 1 ) , (4.2-18)

where H1 , H2 , and H3  represent the complex envelopes of the

individual output fields due to the scattering of the transmit signal

x(t) = Re{exp(+j21Tft)} from each of the three moving particles.

Using Equation (4.2-18), the autocorrelation function

RE 1 REV RE

is equal to:

R. (f ,f t ,t ) =EfHlCfl,t )H* (ft )}+
2' 1' 2 111122

E{H 2 (fi,t)H 2 (f 2 , t 2 ) +

E{H3 (fl,tl)H 3 (f 2 ,t 2 ) } (4.2-20)
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Figure 8. Scatter in the direction nR from se'veral
moving particles occupying an elemental
volume dV when insonified in the
direction nT

moigprilsocpiga lmna
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or

RHR(fl1 f 2 'tlpt 2) MRHd(fl'f2 'tl't2) +RH(fl'f 2,tl't 2) +
EV 1 2

RH(flf 2 ,tlt 2 ) , (4.2-21)

where it has been assumed that

E{Hi(fl,t1 )H(f 2 ,t 2 } 2 RHflf 2 ,tl~t 2 )6 ij
1

i,j = 1,2,3 , (4.2-22)

where

1 , ifi j
i (4.2-23)

is the Kronecker delta. Equation (4.2-22) indicates that the scattered

fields from different individual particles occupying the elemental

volume dV are assumed to be uncorrelated.10

In general, each term on the right-hand side of Equation (4.2-21)

will not be equal to one another since each particle can have (1) a

different scattering amplitude function g (fi n, f) for i = 1,2,3
SRt T2

(2) a different constant translational velocity vector Vi for

i = 1,2,3 ; and (3) different initial ranges (RT )1 and (R ) for

i = 1,2,3 which together with the different velocity vectors yields

different values for the retarded times tI tan

(4.2-14) through (4.2-17)]. However, if it is assumed that the three

properties described above are identical for all particles occupying

dV , then Equation (4.2-21) can be rewritten as:



86

R. (f ,f2,tlt 2) RH(flf 2 ,tl,t 2)PV dV (4.2-24)RiVi

where pV is the volume density function of the point scatterers

(number of scatterers per unit volume) and 2 =R 3 = H -

Next, integrate the right-hand side of Equation (4.2-24) over the

scattering volume which is common to both the transmit and receive

arrays, i.e.,

R H(l~f 2Ptilt2) f R%(fl'f2,tl't2) PV dV

EV V

- E{H(fl,tl)H*(f t )} P dV
1j 2' 2 V
V

(4.2-25)

Upon substituting Equation (4.2-14) into Equation (4.2-25) and

performing the indicated operations, it can be shown that:

V
'f't't2 "I {F~l)*(2) "

E{exp(-j[( T -T V][kEFF I t!- 2FF2Y)

exp{-[(f 1 ) + a(f2)][RoT + R } 0 •

RT + RR

exp{-j2Tr c (fl - f2

Pv
dV , (4.2-26)

R2 R2
°T oR

where V is the scattering volume common to both arrays and
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E{F(f )F (f 2 )} = DT(kluT,klVT)DT(k 2 uT,k2 VT)

E~g(nR nT f )g*(niR,nTA 2

DR(kluR,klVR)DR(k 2 UR,k 2 vR) , (4.2-27)

2l f

k - c ; i - 1,2 , (4.2-28)

kEFF = k- ja(fl) (4.2-29)

and

kEFF2 k2 + jct(f 2 ) (4.2-30)

The derivation of Equation (4.2-26) was based upon the assumption that

the scattered fields from different spatial locations within V are

uncorrelated. For simplicity, all particles within the common

scattering volume V are. assumed to have the same scattering amplitude

function g(fiR,fi,f) and velocity vector V . Otherwise, they would

have to be shown as functions of position. Note, however, g(nR f

is still a function of geometry because of its dependence upon nT and

nR

Next, replace f and f2 with f + f and f' + f12c c

respectively, where f is the center or carrier frequency of thec

bandpass transmit signal. Upon substituting Equation (4.2-15) for t
and an analogous expression for t' into Equation (4.2-26) and

expanding, the following general expression for the autocorrelation

function is obtained:
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RHf+f 'f'+fc tt2 ) 2 f E{F(f+f c)F*(f+f "

V

E exp f -j27r[(f+fc)tl (f'+fc)t2] R
CR

exp{+jrff)[ T'R V-R

exp { - [c(f-f) T RA R tf+f
K y R

exp { t(f+f ) + a(tl - (fR+fOT +R)°R

R^ -

VR R
exp cc [¢(f+f )+ a(f,+f c (R + R

T  R

(4.2-31)

IshimaruI0 refers to the autocorrelation function of the random,*I
time-varying transfer function Rf,f',t,t') - E{H(f,t)H* (f',t')} as

the two-frequency correlation function or the two-frequency mutual

coherence function. The expression RH(f,f',tt') is equal to the

correlation which exists between the complex envelopes of the output

fields H(f,t) and H(f',t') at two different times (t and t') due

to the application of time-harmonic input fields at two different

frequencies (f and f'). If two time-harmonic waves are transmitted
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at the same frequency f and the resulting output fields are observed

at two different times t and t' , the correlation between the output

fields decreases as the time difference At - t - t' increases. 10 The

value of the time difference At at which the correlation function

R(f,f,t,t') = E{H(f,t)H *(f,t')} is approximately equal to zero or
10

decreases to a specified level is called the coherence time. It is a

measure of the correlation which exists between the output fields at two

different times at the same frequency. The reciprocal of the coherence

time is equal to the frequency spectrum broadening a wave will undergo

as it propagates in a random, time-varying medium.1
0

Similarly, if two time-harmonic waves are transmitted at two

different frequencies f and f' and the resulting output fields are

observed at the same time t , the correlation between the two output

fields decreases as the frequency difference Af - f - V increases.10

The value of the frequency difference Af at which the correlation

function RH(ff',t,t) = E{H(f,t)H (f',t)} is approximately equal to

zero or decreases to a specified level is called the coherence

10
bandwidth. It is a measure of the correlation which exists between

the output fields at two different frequencies at the same time. The

reciprocal of the coherence bandwidth is equal to the time delay

broadening a wave will undergo as it propagates in a random, time-

varying medium.
10

Therefore, both the coherence time and the coherence bandwidth,

and hence, the spectrum broadening and time broadening associated with

our model of volume reverberation can be computed from Equation (4.2-31).
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Since Equation (4.2-31) is not a function of Af - f - f' and

At = tI - t2 , the volume reverberation scattering function cannot be

obtained from it via Fourier transformation. However, if Equation

(4.2-31) is substituted into Equation (3.2-20), a mathematical

expression for R~(tl,t2) can be obtained in terms of the pertinent

system functions and geometry of the physical situation. Let us now

investigate whether or not it is possible to reduce Equation (4.2-31)

to a function of Af and At

As of yet, no distinction has been made between narrowband

versus broadband bandpass transmit signals. However, it will be shown

in the subsequent analysis that in order for the two-frequency

correlation function to be wide-sense stationary in frequency, a

narrowband transmit signal must be used. The condition of wide-sense

I stationarity in frequency does not hold for broadband transmission.
7

Therefore, assume that the transmit signal is indeed narrowband.

Referring back to Equation (3.2-20) for a moment, one notices that the

frequency variables f and f' are associated with the low pass

spectrum of the complex envelope of the transmit signal. Therefore,

as a consequence of the narrowband assumption, it is reasonable to

assume that Ifl << f and If'I << f so that

E{F(f + f c)F (f' + f c)} E{IF(fC)1 2  , (4.2-32)

c(f + f ) c (f C) (4.2-33)

and

a(f' + f C) a (fd) (4.2-34)
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Substituting Equations (4.2-32) through (4.2-34) into Equation (4.2-31)

yields:

1E 2 V 1 Cc - VnJ)
V R

exp{+J27rAf [( T - R  V } R

S(c - 'R)J c

2R.

exp{-a(f )[(t, + t) - (fiTflR) T]}

c 21- (V

exP{2a(f C) [R0 +R j ,xp {-j2J(T OR Af} R2P 2  dV
@T

(4.2-35)

where Af f f - f' . The two-frequency correlation function is still

not a function of At = t1 - t2  due to the presence of the term

tI + t2 appearing in the third exponential factor, involving attenua-

tion due to sound absorption.

Some additional observations are appropriate at this point in

order to facilitate simplifying Equation (4.2-35). First of which is

the fact that in our analysis problem, it will certainly be true that:

<< 1 (4.2-36)c

Now, with regard to the significance of the third exponential factor

appearing in the integrand of Equation (4.2-35) to attenuation, consider



92

- the following order of magnitude argument. The time instants t1  and

t2  correspond to the times at which signal returns are monitored at

the receive array and are approximately equal to:

R +R

tl T R (4.2-37)
c

and
an R +R

-2 Tc + 6t , (4.2-38)

IV, where 6t is some relatively small time increment since it is assumed

,re. that t2 > t1 . Therefore, using Equations (4.2-36) through (4.2-38),

it can be shown that

2R ^ *

exp -+t 1 n-

c

exp {a~ ) [2R + citI(fi n~C [2RT T - . --

(4.2-39)

which is negligible compared to the attenuation due to

exp{-c(fc)[2R T + 2RoR]}

and can therefore be ignored. Making use of these observations and

assuming that V can be expressed as the sum of a deterministic and

random component, Equation (4.2-35) finally reduces to the desired

result:
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R

R HeEfAt) = E JF(f j2 -exp-j 27rI~ f- DT
VV e

R

E exp{-i2rr [ At -f R

exp { -2c (f) [R 0+R0

c R2R2

T  0oR

~(4.2-40):

where SDET is the deterministic Doppler shift defined as:

ADET (4.2-41)

U being the deterministic component of the velocity vector V , and

SRND is the random Doppler shift defined as:

RND A c cR f (4.2-42)

4.
Vf being the fluctuating or random component of V . Note that the

Doppler shifts ODET and ORND are functions of angle due to the

presence of the inner product. For example, in the spherical coordinate

system, DET is a function of the spherical angles (6,0) . And since

the directivity functions DT and DR are also functions of (6,w)
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different deterministic Doppler shifts are weighted differently by the

beam patterns. Thus, a frequency spread will result because of the

finite extent of the beamwidths of both the transmit and receive beam

patterns. Now, if Equation (4.2-40) is substituted into Equation

(2.3-51), one obtains the volume reverberation scattering function:

RS(T) f f E{IF(f) }P( +ODET) 6 [T - T( )]
REV" RNDV

exp1-2ca(fc) [ROT + ROJJ R 2 R 2  V(2-300

°T oR

which is a function of the time delay T (in sec) and the Doppler

spread 4 (in Hz), where

A
T(4) T + ((ORoR / (fcc)] , (4.2-44)

T (RoT + R) /c (4.2-45)

and

E{IF(fc)1 2 } = IDT(kUT'kVT) 12E{ Ig(fiRnT'fc) 2 }

IDR(kuR,kvR)i 2 (4.2-46)

where k 2nf /c and p () is the probability density function of
c TRND

the random Doppler shift which is given by:

c Y2
p W =R cOO RN D I fT- lR I if c a Tr '

J 2 exp .fVc 2 2}dx; I1 < x <

f / 2_2 21nTnR ( 2
(^T-^lfca(4.2-47)
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where a is the standard deviation of i)fl Note that T(O) as

defined by Equation (4.2-44) is not the round-trip time delay (see

Appendix A and References 27-29). However, it is shown in Appendix A

that the round-trip time delay can be obtained from T() by dividing

it by the dimensionless scale factor [1 + ( /fc)] That is, the

round-trip time delay is given by T(O)/[l + (/f )].

The derivation of the probability density function of the random

variable
f(a T-fiR ) . ^ f fc^ [~fcosE~RDA • Vf lflr-Ri IVf~cs

RND c (4.2-48)

can be found in Appendix B and was based upon the assumptions that Ijfv

was Maxwell distributed, the angle E was uniformly distributed, and

that the random variables I'fI and cosE are statistically

independent (use was made of References 30-32 in the derivation of

the density function). The function E{fg(nR,nT,fc) 21} = ad(nR,fT,fc)

is referred to as the average differential scattering cross section of

one of the point scatterers and has units of area.1 0'3 3'34 The average

bistatic radar cross section is equal to

47E{Ig(fiR ,fC)12} = 4 7rcyd(nR,nT,fc)

The volume reverberation scattering function given by Equation

(4.2-43) predicts that the input signal's power will undergo both a

frequency spread--via the transmit and receive beam patterns and the

probability density function pR --and a time spread or contraction--
R1D

via the scale factor 1 + 4/fc . For a monostatic transmit/receive

array geometry, let
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R 0 R 0 fi r

uT = uR f U

(4.2-49)

and

nR -nT

where u and v are the direction cosines with respect to the positive

x and y axes, respectively.

In the case of a monostatic geometry, the average backscatter

radar cross section of one of the point scatterers is equal to

4TE{2g(-fl = 47ad(-fT,nT,f)

.34

The target strength of an individual point scatterer is 
given by:

10 log [Od(-fiT'fnT9fc)/A1]dB re A , (4.2-50)
101

where A, = 1 m and re means "relative to." Thus, the target

strength or volume reverberation backscattering strength is a decibel

measure of the differential backscattering cross section. 33'34 The

volume reverberation backscattering strength is dependent upon the

type and density of scatterers per unit volume.3 3'34 For example, the

backscattering strength per unit volume is given 
by: 34

10 logl0[0Vad(- T'Tfc)R1 dB re R , (4.2-51)

where pV is the volume density of the scatterers and R is the

reference distance, usually chosen to be 1 m.
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As an example, the average received energy (in dB) from volume

reverberation will be computed from the expression (see Equation (2.3-61)]

0o

E = E f f RE(T,O)dTdO , (4.2-52)
y REV

where E is the average received energy, E is the transmit energy,y x

and R S (T,) is the volume reverberation scattering function given by
SREV

Equation (4.2-43). For simplicity, assume a monostatic transmit/receive

array geometry and no motion, i.e., 4DET f ORND " 0 and as a result,

p 0 + ODET) = p(0) 6() . With these assumptions, Equation (4.2-43)
RND RND

becomes:

R(- f E{IF(f )l2}S( )6[ - -c-+ cREV V c

I exp{-4 (fc )r}(pv/r 4 )dV (4.2-53)

or

Rs (T,)) S( 6 () , (4.2-54)

REV REV

where

RS(-) =f E{IF(f ) 12}6[T (2r/c)]exp{-4cc(fc)r}(pv/r4)dVREV R v (4.2-55)

and from Equations (4.2-46) and (4.2-49):

E{[F(fc )1
2 } = IDT(ku,kv) 12Od (-nT, T, fc)I DR(ku,kv)I

2

(4.2-56)
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Now, if Equation (4.2-54) is substituted into Equation (4.2-52), one

obtains:

E = E RS(T)dT (4.2-57)
y x REV

and substituting Equation (4.2-55) into Equation (4.2-57) yields:

00

E y= Ex f E{JF(f)1 2} f J6[T - (2r/c)]dT

V -0

exp{-4c(fc)r} (Pv/r4 )dV (4.2-58)

or

-iY = Ex f E{IF(f c ) 12 }exp{-4c(f c)r} (pv/r 4)dV. (4.2-59)

V

Next, assume a spherical coordinate system so that

dV = r 2sin drd dip and that P is not a function of position. In

addition, assume that ad(-flT,T,fc) does not depend upon nT i.e.,

assume that U d(-nT,nT,fc) is omnidirectional and is equal to a

constant. Therefore, with these assumptions, Equation (4.2-59) can be

expressed as:

r+ (Ar /2)

-- V- J (exp{-4c(fc)r}/r4 )r

r-(Ar/2)

ri12 21T

f f ID T(ku,kv) 12 ID R(ku,kv) 12Sin~d6d P(4.2-6O)

where u = sinecosp and v = sinesinw . If it is further assumed that

the range interval Ar is negligible compared to r, then the integrand

of the range integral is approximately constant so that:
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r+(Ar/2)

(exp{-4a(fc)r}/r4 )r 2 dr = [exp{-4a(f )r}r - 4 I(r 2 Ar)

r-(Ar/2) (4.2-61)

and as a result, Equation (4.2-60) simplifies to:

E =~p~ 4 2Ey E x( 0
d ) [exp-4a(fc)r}r- I(r ArT) , (4.2-62)

where 71/2 2Tr

T= f ID T 2 IDRI 2 sinededp (4.2-63)

e=o =o

Therefore, the average received energy from volume reverberation in

decibels is:

10 log1 0 Ey 10 log10 E + 10 logl0(PVCd ) - 40 loglor +

10 lOg10 [exp{-4a(fc)r}] + 10 Iogl0 (r2 Ar)

(4.2-64)

Equation (4.2-64) is the sonar equation for volume reverberation level

(e.g., see Urick 33) since (1) 10 logl0 E is the source

(2) 10 log10 (PVod) is the volume reverberation backscattering strength

per unit volume, (3) -40 log1 0r is the two-way transmission loss due

to spherical spreading, (4) 10 log1 0[exp{-4L(fc)r}] is the two-way

transmission loss due to sound absorption, and (5) the expression

r 2 Ar corresponds to what Urick 33 calls the "reverberating volume."

And finally, for the sole purpose of comparison, an alternate

expression for the volume reverberation scattering function as is found
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in Moose 1 7 will be presented. As Moose1 7 , indicates, several researchers

(e.g., see References 22, 35, 36) have modelled the reverberation return

as:

N(t)

y(t) f aix(t - Ti)exp{+j2ni t  , (4.2-65)
REV

where N(t) is a Poisson random variable which governs the number of

reflections from the discrete point scatterers that contribute to the

sum at time t . The ai are random coefficients which include all

such factors as transducer patterns, propagation loss, and the cross

sections of the scatterers. If the ai are zero-mean statistically

independent random variables, then Moose 17 shows that the autocorrelation

function R-(t,t') of Equation (4.2-65) is of the same form as Equation
YREV

(3.2-23) and that the scattering function is given by

R R (T,) E{[a(T, )) 2 }P(',) , (4.2-66)
REV

where E{Ia(rO1 2} 12 E{1a i2 } for scatterers with ranges and Doppler

shifts near (T,O) and p(T,O) is the Poisson parameter which

describes the density of scatterers near (T,O) , i.e.,

P(N;T,O) - [P(T',O)ATAO1]N exp{-[p(T,O)ATA] } (4.2-67)
N!

is the probability of exactly N scatterers that have Doppler shifts

between 0 and + AO and time delays between T and T + AT . The

product P(r,O)ATrA is the expected number of scatterers in the area

ATA



101

The differences between the volume reverberation scattering

functions given by Equations (4.2-43) and (4.2-66) are obvious.

4.3 Target Scattering Function

The target scattering function for a doubly spread target will be

derived in this section. The doubly spread target is modelled as a

linear array of discrete highlights in deterministic translational

motion. Each highlight is represented by its own average differential

backscattering cross section. The scattered acoustic pressure fields

from the individual highlights are assumed to be uncorrelated with one

another.

In order to derive the scattering function for a simple line

target composed of discrete point scatterers, start with the monostatic

form of the volume reverberation scattering function given by Equation

(4.2-43) in the spherical coordinate system, i.e.,

R (TI4O) = Jj.[ c/c ]2exp 4a(f) [ CTc

PV 2 +, i E{IF(f) 2 }

"0 + ODET)d#sined6 ;

(2 + f )  > T > -/f) (4.3-1)
C c - C

where RL and RU are the lower and upper limits of integration,

respectively, with respect to range (in meters), and where

16
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p ( 0+ ODET) E 6(o + 0DET) since it is assumed that the target, and
RND

hence, the scatterers, have only deterministic translational motion.

The problem now is to mathematically represent the volume density

function pV of the scatterers.

Toward this end, refer to Figure 9 where the line target is

represented by the vector rAB ' The length of the target is AB L

meters and it has a velocity vector U = 1i616AB , where fAB is a unit

vector in the direction of rAB . Thus, all the highlights will also

have the same velocity vector U . Both the transmit and receive arrays

lie in the xy plane. The relative orientation of the target with

respect to the arrays is specified by the position vectors rA  and rB

to the endpoints A and B of the target, respectively. Note that
-AB - r . ~ 4. 4A A

= -rB - . The vector r = r + dn is the position vector to

any discrete highlight along the target. Any particular highlight is

designated by its distance d (in meters) from endpoint A .

The term cT/(2 + Ofc) appearing in the argument of pV is the

range to a highlight. The range, however, can also be specified in

terms of its corresponding time delay T . Therefore, the volume

density function can be expressed as:

N

VCt, (T - T nM)6( - )6( -n) , (4.3-2)
n=l

where
r

T = - [2 + /f] (4.3-3)
n c

and the spherical coordinates (rn 0n,4n of the n th highlight are

given by:
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dU -H-.rA

AA

Figure 9. Orientation of line target with respect to the
transmit and receive arrays.



104

r Irn = [ - (dn/L)]I'AIuA + (dn/L)IrBluB}2 +

- (d /L)IAIvA+ dn/L)"BIvB}2 +

{[ - (dn/L) ]IrA wA + (dn/L)lBlWB}2 
1/2

(4.3-4)

en = cos 1(1/r) [i- (d n/L)]IrA1wA + (dn/L) IrBIwB)

(4.3-5)

and

= cs-' {[/(r nsinen)] [ - (dn/L) ]irA uA +

(dn/L) IrBluB } 3 (4.3-6)

where

UA = sinlAcos4IA uB sinOBcOSPB

vA A sin "s A vB B sin()BsinB (4.3-7)

wA = cose A  wB  cose B

where uA and uB , vA and vB , and wA and wB are the direction

cosines jf the endpoints A and B of the line target with respect to

the positive x , y , and z axes, respectively, and N is the total

number of highlights. The parameter d is the distance (in m) of then
th
n highlight from endpoint A . Substituting Equation (4.3-2) into

Equation (4.3-1) yields the target scattering function:
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N 2
R (T,4) I [(2 - DET/fc )/(cTn)]STRGT n=1 n n

exp{-4c(fC)[(CTn)/(2 - DET /f)]}•
n

E{IFn(f c )i 2
}sinen S(T - Tn)6(o + 0DET n)

n

(4.3-8)

where

Tn  (r /c)(2 - hET /fc) (4.3-9)
n

=12 2 _T^ fc12}
E{IF n(f c) ID T(kUn'kVn ) 1 E{jg n(-n T~c

IDR (kun ,kvn )1 2  (4.3-10)

and from Equation (4.2-41):

DET (2f c/c)(Il/L) {Un IrBlUB IrAIUA] +
n

v fr l w~ri irwlVn K BIv B  il + WnB'rB w -r Aw

(4.3-11)

where

u = sin6 cosn n n

v = ainO sin1 n  (4.3-12)
nn

and

w = cos
n n

are the direction cosines of the nth highlight with respect to the

positive x , y , and z axes, respectively.

Im L 

lt t
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The average monostatic (backscatter) radar cross section of the nth

highlight is given by 4E{Ign(-^Tn f)I 2} 41m (-^T,T,fc) , where
n

0d (-aT, aT fc) is the average differential backscattering cross section
n th th

of the n highlight. Therefore, the target strength of the n high-

light is34 [see Equation (4.2-50)]:

10 log10 [d (- T'nT' fc)/A 1 ] dB re A1  (4.3-13)
n

2
where A, = 1 m

Since the target is being modelled as a linear array of N

highlights (sources) radiating in random phase, the average differential

backscattering cross section of the target is given 
by:3 4

N
a d(-nTflT'f) a d d (- T' r'f  (4.3-14)

il i T

Another way of stating this result is that Equation (4.3-14) is a valid

expression for ad(-nT,naT,f c) when the N scattered fields are

uncorrelated, and as a result, intensities add. When the N sources

are radiating in phase (i.e., the N scattered fields are correlated):

N 1/22
cd(-fT'fT'fc) [ d (-nTn T f (4.3-15)

34
since amplitudes add. The corresponding target strength can be

obtained by computing

10 log10 [ad(-anT,fi ,f) / A1] dB re A1  , (4.3-16)

2

where A1 I I m . In our case, Equation (4.3-14) is the applicable

expression.
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4.4 Example Problem Calculations

4.4.1 Volume reverberation scattering function. A computer

solution of the volume reverberation scattering function-will be

presented for an example problem involving a monostatic transmit/receive

array geometry.

The monostatic form of the volume reverberation scattering

function in spherical coordinates is obtained from Equation (4.2-43):

R2 - f exp { -4 {(f c )  C}S REV CT 2 + /fc "

Tr/2 27 _ _ E
PV 2 f + ',F(fc ) 12 }

=0 *=O C

pp (0 + ODET)d~sinOde ; (4.4-1)
RND

RU
-(2 + OIf ) > T > !(2 + ,Ire

C C - c

where RL and RU are the lower and upper limits of integration with

respect to range, respectively. It is assumed that the array lies in

the xy plane. Thus, the positive z axis is normal to the face of

the array. In this example problem, both the transmit and receive

directivity functions are identical, i.e., DT = DR = D . As a result,

E{IF(fC)12} = ID(ku,kv)I4 E{Ig(-fiT,T,f ) 12 }, (4.4-2)
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where the directivity function actually used was:

[ (2n 1lTd C ~tI qcos -1 u on 7
D(ku,kv) -

5 10 in [Ld v~

n-l

(4.4-3)

Equation (4.4-3) corresponds to a (10 x 10) planar array composed of

10-element, amplitude shaded, linear arrays parallel to the x axis

and 10-element, uniformly shaded, linear arrays parallel to the y axis

where QI = 1.0 , Q = 0.8389 , Q3 = 0.5801 , Q4 = 0.3153

Q5 = 0.1251 , and d/X 0.4 . The parameter d is the uniform

spacing (in m) between elements and X is the wavelength (in m)

corresponding to the frequency f (in Hz). This particular choicec

of amplitude shading coefficients ensures 40 dB down sidelobe levels

in the xz plane for y = 0 . The phase shift u = sinO COSIP is
0 0 0

used for beam tilting in the xz plane.

We will assume that the array is in motion in the positive z

direction and that the relative, deterministic velocity of the discrete

point scatterers with respect to the array is U -20.0 2 m/sec so

that

40.0 f
DET =- c c cose Hz . (4.4-4)

Before we can evaluate Equation (4.4-1), we must evaluate

+ %DET. Values for the probability density function of the
RND

random Doppler shift p,(.) as given by Equation (4.2-47) were

RND
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calculated via numerical integration. Figures 10a and lOb are plots of

p (-) for a = 0.1 m/sec and a = 1.0 m/sec , respectively, for a
RND

monostatic transmit/receive array geometry. Recall that a is the

standard deviation of "fl

Finally, for simplicity, also assume that the scatterers are

uniformly distributed in space, i.e., pV = constant ; and that the

average differential backscattering cross section of an individual

point scatterer is omnidirectional, i.e., E{jg(- T,'TVfc)1 2}  does not

depend upon nT and is therefore equal to a constant ad *

Let us first consider the case of relative, deterministic motion

only. Using the aforementioned assumptions and ieplacing p (4 + DET )

RND

by 5(p + 0DET, Equation (4.4-1) reduces to:

21r

R S RE) = K f ID(ku,kv) 4 diPsin , (4.4-5)
mREV =

where 0 is such that:

40.0 f
c cose = Hz ; > 0 (4.4-6)

and RU R
- (2 + _/fc

)  > > !L (2 + /f (4.4-7)C -- c C

and where
2

K p 2x 4o 2fCV 2  T Jexp {-4"(fc) 2 + 3 /f ad

(4.4-8)
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Figure lOa. Probability density function of the random
Doppler shift for a monostatic transmit/receive
array geometry, a = 0.1 m/sec
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Figures 11, 12, and 13 are normalized Doppler profiles (range

constant) of Equation (4.4-5) for beam tilts of e0 = 0  , ' o = 00

o 0 = 300 , o = 0* ; and eo = 450 o = 0* , respectively. The

values of c = 1500 m/sec , c(fc) = 4.9 x 10- 4 nepers/m , and

f = 25 kHz were used in connection with Figures 11-13. Note thec

increase in frequency spread, measured at the 3 dB down level, as the

beam tilt angle e is increased. Also observe from Figure 11 that0

the scattering function peaks at c 664 Hz , which corresponds to

e = 5*, rather than peaking at # = 667 Hz , which corresponds to

e = 8 = 0° . Mathematically, this is due to the sine dependence of0

the scattering function. Physically speaking, however, 6 = 0* implies

that the elemental scattering volume dV is zero; and hence, there is

no scattered power. These plots demonstrate the effect of tilting a

given beam pattern on frequency spread. Figure 15, however, demonstrates

the additional effect of random motion of the scatterers on frequency

spread.

Figure 14 corresponds to relative, deterministic motion only

[see Equation (4.4-5)] with o = 450 = 0 f - 25 kHz,

(f c) = 4.7 x 10"4 nepers/m , and c = 1505 m/sec . If we now allow

the discrete point scatterers to have random motion, Equation (4.4-1)

reduces to:

2nr n/2

RS(T,4) = Kf fID(kukv) 14
REV O 0

40.0 f

p(0 c c cose) sinededp,(4.4-9)
RND
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0 =664 Hz e =50

FREQUENCY SPREAD z 8 Hz

-2-

-4-

-51 I I
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DOPPLER SHIFT, 0 (Hz)

Figure 11. Normalized Doppler profile of volume reverberation
scattering function, eo 00 ' o = O

0 0
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Figure 12. Normalized Doppler profile of volume reverberation
scattering function, 60 30- ' 00

0

.... " ... .. " - '° *" ' --', i : . .. '- = 1
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Figure 13. Normalized Doppler profile of volume reverberation
scattering function, e 450 , o 00
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Figure 14a. Normalized Doppler profile of volume reverberation
scattering function. Relative deterministic motion

only (6 45 , 00).
0 0
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Figure 14b. Normalized Doppler profile of volume reverberation

scattering function. Relative deterministic motion
only (00 45', 00 00).
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Figure 15a. Normalized Doppler profile of volume reverberation
scattering function. Relative deterministic pylus
random motion (8 450 * 00).
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Figure 15b. Normalized Doppler profile of volume reverberation

scattering function. Relative deterministic plus
random motion (0 = 450 , = °).
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where K is given by Equation (4.4-8), the directivity function D by

Equation (4.4-3), and p (1) by Equation (4.2-47) with T = 1.0 m/sec
RND

(see Figure 10b). Figure 15 is a normalized Doppler profile of

Equation (4.4-9). The values of the parameters used for Figure 15 are

identical with those used for Figure 14. By comparing Figures 14 and 15,

it is seen that an additional frequency spread of 26 Hz is introduced by

the random motion of the scatterers for a = 1.0 m/sec . This

represents an increase of approximately 17%.

4.4.2 Target scattering function. The target scattering

function given by Equation (4.3-8) is calculated for an example problem

using the monostatic transmit/receive array geometry depicted inK Figure 9. In this example, the array is not in motion. The magnitude

of the deterministic velocity of the target is iJ = 20.0 m/sec. The

location of the endpoints A and B of the target with respect to the

array is specified by the following constants: 1rAI = 500 m

0A = B = 5.739-, I)A = 1800 , and IB = 00 " With this information,

IrBI can be calculated. The length of the target is L = 100 m and

the number of highlights being considered is 10. The first highlight

is located 5 m from point A and the spacing between the remaining

highlights thereafter is 10 m. The values 0 = 450 , M 00
0 .0

c - 1500.342 m/sec , a(f ) = 4.9 x 10- 4 nepers/m , and fc = 25 kHz

are used. It is assumed that DT = DR = D , where the directivity

function D is given by Equation (4.4-3). It is also assumed that

E{jg n (-nTvTfc)12 } is equal to a constant value which is the same for

all N highlights.

A]
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Values for the normalized target scattering function, as a

function of T and ,are presented in Table I. Upon inspecting

Table I, it can be seen that highlights 1 through 5 have positive

Doppler shifts which indicate that these five highlights are approaching

the array which is in agreement with the geometry of the problem. Also

note that highlights 6 through 10 have negative Doppler shifts which

indicate that these five highlights are receding from the array which is

also physically correct. Highlights 5 and 6 have Doppler shifts which

are almost equal to zero since the position vectors r 5  and r 6  for

these two highlights are nearly perpendicular to the array. Note that

the magnitude of the scattering function is larger for highlights 6

through 10 as compared to highlights 1 through 5. And, in fact, the

scattering function has its maximum value at highlight 8. This is also

In agreement with the geometry of the problem since the beam pattern was

tilted in the general direction of highlights 6 through 10.

The time delay parameter Tn given by Equation (4.3-9) does not

correspond to round-trip time delay, and hence, the values for Tn

appearing in Table I do not correspond to round-trip time delays.

However, as was discussed previously in Section 4.2 with regard to the

volume reverberation scattering function, the round-trip time delay can

be computed from Tnby dividing it by [l- ( DET /f c 1  i.e., the

th n
round-trip time delay corresponding to the n highlight is given by

T /1- (ODET /fc

nn

trip time delay 2r nIc , and the actual round-trip time delay

-n [1 DET /f) , for the ten highlights. The simple round-trip
n
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TABLE 1

NORMALIZED TARGET SCATTERING FUNCTION

Highlight T T n  -DET RT
n TRGT

n (sec) (Hz) (dB)

1 0.666680 59.851 -0.376507E 02

2 0.665438 46.579 -0.243289E 02

3 0.664461 33.255 -0.107524E 02

4 0.663752 19.888 -0.592028E 01

5 0.663310 6.481 -0.686279E 01

6 0.663137 - 6.858 -0.511047E 01

7 0.663231 -20.276 -0.328704E 00

8 0.663592 -33.638 -0.OOOOOOE 00

9 0.664220 -46.960 -0.294615E 01

10 0.665115 -60.229 -0.109380E 02
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TABLE 2

ROUND-TRIP TIME DELAY CALCULATIONS

Highlight r n2r nIc T n/[I - (o ET u fd

n(in) _(sec) (sec)

1 499.526 0.6658828 0.6650877

2 498.728 0.664819 0.6642005

498.128 0.6640192 0.6635783

4 497.730 0.6634887 0.6632244

5 497.531 0.6632234 0.6631381

6 497.534 0.6632274 0.6633189

7 497.738 0.6634993 0.6637693

8 498.143 0.6640392 0.664486

9 .498.747 0.6648444 0.66547

10 499.552 0.6659175 0.6667211
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time delay does not depend upon Doppler shift while the actual round-

trip time delay does. The range values rn were computed from

Equation (4.3-4). Upon inspecting Table II, it can be seen that the

actual round-trip time delays for highlights I through 5 are smaller

than the corresponding simple round-trip time delays since these five

highlights have positive Doppler shifts and are therefore approaching

the array. Similarly, the actual round-trip time delays for highlights

6 through 10 are larger than the corresponding simple round-trip time

delays since these five highlights have negative Doppler shifts and are

therefore receding from the array.



CHAPTER V

SURFACE REVERBERATION SCATTERING FUNCTION

5.1 Introduction

The underwater acoustic propagation path between transmit and

receive planar arrays via the surface of the ocean is treated as a

linear, time-varying, random WSSUS (wide-sense stationary uncorrelated

spreading) communication channel. The random, time-varying, surface

reverberation transfer function is derived for a bistatic geometry

using a generalized Kirchhoff approach. The result for the bistatic

configuration can then be easily reduced to either the specular or

backscatter geometries.

The generalized Kirchhoff approach uses a Fresnel corrected

Kirchhoff integral, no small slope approximation, and the Rayleigh

hypothesis that the scattered acoustic pressure field can be represented

as a sum of plane waves travelling in many different directions. The

transfer function obtained in this chapter is shown to be greater in

magnitude than those transfer functions previously derived by the

classical Kirchhoff approach, especially for the specular and back-

scatter geometries.

The randomly rough, time-varying surface is assumed to be a zero

mean, wide-sense stationary, Gaussian process. Two second order

functions are derived from the transfer function. They are the two-

frequency correlation function and the surface reverberation scattering

functidn. These second order functions are shown to be dependent upon
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the directional wave number spectrum of the ocean surface. The

scattering function analysis predicts both a spread in round-trip time

delay and in frequency.

5.2 Surface Reverberation Transfer Function

5.2.1 Background discussion. The bistatic underwater propagation

path from transmit array to receive array via the ocean surface is

assumed to be a linear, time-varying, random communication channel. If

one transmits a time-harmonic signal of the form exp(+j2rft) , then the

acoustic pressure field at the receive array due to scatter from the

ocean surface can be obtained from Green's Theorem.
37

Consider Figure 16 which depicts the transmit array T , the

receive array R , and the ocean medium as being enclosed by the closed

surface S' = S + S" , where S is the ocean surface, and S" is an

arbitrary contour to be specified later. Assuming a time-harmonic input

signal of the form exp(+j27Tft) , the spatial factor for the acoustic

23
pressure field at the receive array is obtained from Green's Theorem as

P(rR) =f p(r')G(rRIr')dV' +

V1

1") -Rp(r' ) -p')-LG(rRi'')]dS',

St (5.2-1)

where V' is the volume enclosed by S' , p(r') is the source

distribution, G(rRIr') is the Green's function for the bounded medium,

p(r') is the total acoustic pressure field at each point on the closed

surface S' , and 3/3n' signifies a partial derivative in the outward

normal direction (away from the enclosed volume) evaluated at each point
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S OCEAN SURFACE

TrR-7

ORIGIN

Figure 16. Transmit array T , receive array R , and ocean
medium being enclosed by the closed surface S' = S + S".
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on S' . Equation (5.2-1) is valid if the receive array's location,

denoted by the position vector rR , is either on or inside the closed

surface S' , and Equation (5.2-1) is invalid if rR is outside S'tR

It can be seen from Equation (5.2-1) that the total field at the

receive array is equal to the sum of the field due to the elementary

sources and the field due to scatter from the boundary. As an example,

assume that the source is a point source, i.e., p(r') = 6(r' - r T)

As a result, the volume integral in Equation (5.2-1) reduces to:

V )(' V''d')(r*Ir.)VfR f T R
V V1 (5.2-2)

or

J P(r')G(rR1r')dV' G(rR rT) (5.2-3)

V1

where G(rRlrT) represents the direct acoustic pressure field from

transmit array to receive array.

The direct acoustic pressure field from transmit array to receive

array is of no concern in this chapter. The important quantity of

interest is the acoustic pressure field due to scatter from the

boundary. Therefore, from Equation (5.2-1), the expression for the

acoustic pressure field at the receive array due to scatter from the

boundary S' is given by:

p .r ) - p('') -I- G(r Ir') d$'
PS(rR) R (rRl '3) IS

(5.2-4)
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If we follow the Kirchhoff approximation and let G(rR r') be

equal to the free-space Green's function, i.e.,

4. exp(-JkIr r'

G(rRlr') = I - R (5.2-5)
r rR

where k = 2f/c is the wave number, and then substitute Equation

(5.2-5) into Equation (5.2-4), we obtain:

r) ) j [ exp(-jkRR) a - P(*I)

PS (r R) R= n

S RR ar

exp (-JkR R) dS' (5.2-6)
an' RR

which is the integral theorem of Helmholtz and Kirchhoff,26 where

RR = IRRj I- RI . (5.2-7)

Equation (5.2-6) can be further simplified by choosing the contour S''

to be an infinite hemisphere centered about the receive array's

location (it is assumed that the ocean bottom is infinitely far away).

Therefore, since S' S + S''

'- f + f f (5.2-8)

St S s'' S
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since

J =0 (5.2-9)
S

1 1

by Sommerfeld's radiation condition.
26 ,3 7

As a result of Equation (5.2-8), Equation (5.2-6) reduces to:

c_ ) f[ exp (-j kR) a 0 exp(-JkRR)1
p(R) = p(r) - p(r) L R dS,

PSS

(5.2-10)

where p(r) is the total field at each point on the ocean surface S

3/3n signifies a partial derivative in the outward normal direction

'(away from the ocean medium) evaluated at each point on S , and

RR = ir r R (5.2-11)

where the prime symbol " ' " has been removed from the position vector

r' (see Figure 16).

Before proceeding further with the discussion, let us refer to

Figure 17 which describes the geometry of the problem to be considered

in this chapter. Note that the transmit and receive arrays occupy the

XTYT  and XYR planes, respectively. The ZT  and ZR  axes are

perpendicular to the XTYT  and XRYR  planes, respectively. The

reference coordinate system is XYZ . If the ocean surface was

perfectly smooth, it would occupy the XY plane. Any vertical

deviation of the ocean surface from the XY plane is represented by

Z = &(x,y,t) . The random process (x,y,t) describes the randomly

rough, time-varying, ocean surface. It is assumed to have a zero mean,

i.e., E{ (x,y,t)} - 0 Note that (x,y,t) is a function of both
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Z= C X, y, t) Y n

d C • X

Nt x /

/ / "PLANE

Y T 
x/ --XR

Figure 17. Bistatic geometry for surface-scatter communication
channel.
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position and time. The time-varying position vector r(t) locates the

infinitesimal surface area element dS . The unit vector n is normal

to dS and is pointing in the conventional outward direction away from

1~ 
4.

the ocean. The position vectors R1 and R2 are chosen to be colinear

with the axes of the main lobes of the transmit and receive directivity

patterns, respectively. The time-varying position vector RT(t) gives

the range of dS from the transmit array, at any time t , in the

direction nT * Similarly, the vector RR(t) gives the range of dS

from the receive array, at any time t , in the direction (-aR) . Both

nT and nR are unit vectors. Based upon the geometry of Figure 17,

Equation (5.2-11) becomes:

R R R(t) = r (t)t - R 2 (5.2-12)

where rR
Equation (5.2-10) and the geometry of Figure 17 have been the

basic starting points for many researchers who worked on various

aspects of the problem of acoustic scattering from the ocean surface.

Eckart38 started with Equation (5.2-10); however, he defined

p(r) as the scattered acoustic pressure field on the ocean surface

and not as the total (incident plus scattered) field. Approximating

the ocean surface as an ideal pressure release boundary and assuming

that it was locally plane compared to the wavelength of the incident

radiation, Eckart 38 reduced Equation (5.2-10) to:

PS (rR) = n [ (-) dS (5.2-13)S 9 R R'
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where p(r) is the known incident radiation given by:I

exp(-jkRT) (5.2-14)

pM = D (k, r) R52-4
T RT

and, from Figure 17,

RT - RT(t) = IRT(t)l [nt)- , (5.2-15)

where rT in Figure 16 is equivalent to R in Figure 17. The

directivity function of the transmit array projected onto the ocean

_+ 38
surface is represented by D T(k,r) . Although Eckart did not

consider time-varying position vectors, he did make two important

additional assumptions. The first is referred to as the small slope

approximation since he replaced the normal partial derivative with

a/3Z and dS with dxdy . Doing so and using Equation (5.2-14),

Equation (5.2-13) becomes:

RTRRf]-jkdxdy ,R

p (rR D J D(k,x,y) -L [eP-J(TR) dxdy

(5.2-16)

where DT(k,x,y) is the projection of the directivity function of the

transmit array onto the XY plane. The second assumption Eckart
38

made was that the directivity function of the transmit array was highly

directional (very narrow beamwidth). Thus, Eckart 3 8 limited himself to

a Fraunhofer approximation when he expanded the ranges RT and

appearing in the complex exponential in terms of r, Rl , and R2

Eckart 38 based his subsequent analysis on Equation (5.2-16).
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38 39Following the basic approach of Eckart, Gulin also started

his analysis of acoustic scattering from a sinusoidal surface with

Equation (5.2-16). Although Gulin did not include a transmit beam

pattern, he used a Fresnel approximation to expand the ranges RT and

RR in the complex exponential rather than a Fraunhofer approximation.

As was previously mentioned, Eckart3 8 justified using a

Fraunhofer approximation on the assumption that the beam pattern of

the transmit array was sufficiently directional. However, Melton and

Horton,4 0 and Horton and Melton,41 stimulated by Gulin's39 work,

disagreed with Eckart's3 8 justification for the use of the Fraunhofer

approximation. They noted that the beamwidths of practical acoustic

sources are large enough to make one question the validity of using a

Fraunhofer approximation, especially since the area of insonification

of the ocean surface increases as the distance from the source to the

surface increases. Thus, the beamwidth of the directivity pattern plus

the geometry of the physical situation must both be taken into account

40
when deciding upon the Fraunhofer versus Fresnel approximation. In

fact, Horton and Melton 4 1 showed that for their particular experimental

arrangement, the Fresnel approximation was superior to the Fraunhofer

approximation for the calculation of scattered intensity. The question

of the Fraunhofer versus Fresnel approximation will be discussed

further in Section 5.2.2.

Several authors have approached the problem of surface scatter

by viewing the ocean surface as a linear, time-varying, random filter

as will be done in this chapter (see References 14, 37, and 42-45).
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39
Following Gulin, the authors of References 14 and 43-45 also used

Equation (5.2-16) in conjunction with the Fresnel approximation as

their starting point with the notable exception that a Gaussian

functional form for the projected transmit beam pattern was used

throughout their analysis.

Horton and Melton4 1 suggested that the approximation that most

critically limited their theoretical analysis was the small slope

approximation, i.e., using the partial derivative with respect to Z

to approximate the normal partial derivative 3/an . Several investi-

gators have used the Kirchhoff approach to describe scatter from a

randomly rough surface without making the small slope approximation.42'

46-48 They started their analysis with Equation (5.2-10) and defined

p(r) as the total acoustic pressure on the ocean surface, i.e.,

incident plus scattered. And by taking into account the normal partial

derivative, a slope correction factor was obtained. 46 However, they

used a Fraunhofer approximation and no transmit directivity function

was included.

Tolstoy and Clay4 9 also began with Equation (5.2-10) but they

defined p(r) as scattered acoustic pressure only and used a Fraunhofer

approximation after Eckart. 38 However, unlike Eckart, 38 they did not

make a small slope approximation and they did include a Gaussian

functional form for the projected transmit beam pattern. Clay and

Medwin,34 on the other hand, followed Gulin's39 initial approach with

the exception that they also included a Gaussian functional form for

the projected transmit beam pattern. And finally, the results of the

analysis reported in References 14, 40, 41, and 43-45 pertain only'to
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a specular orientation between the transmit and receive arrays,

whereas the results reported in References 34, 42, and 46-49 pertain

to a general bistatic geometry and are not limited to a specular

geometry.

As one can see, many different combinations of assumptions have

been made by the investigators mentioned above although each began with

Green's theorem and the Kirchhoff integral. However, the following

important but overlooked assumption is common to all: the fact that

the position vectors R and RT  are not parallel, and that the

RR  anta49vectors R2 and RR are also not parallel, is ignored. The

assumption that these pairs of vectors are parallel is very much

dependent upon a sufficiently narrow beamwidth.4 2 Therefore, the

following pattern emerges: if the beamwidth of the transmit directiv-

ity function is relatively narrow so that a Fraunhofer approximation

is sufficient, then the "parallel assumption" is reasonable. But if

the beamwidth is relatively broad, a Fresnel approximation must be used

and the "parallel assumption" is no longer valid. Although References

14, 40, 41, and 43-45 used a Fresnel approximation in order to handle

the relatively broad beamwidths of practical acoustic sources, they

still assumed that the "parallel assumption" was valid.

The derivation of the random, time-varying, transfer function of

surface reverberation in this chapter is also based upon the form of

Equation (5.2-10), where p(r) is defined as the total acoustic

pressure field on S Both a transmit and receive directivity

function are included. Receive directivity functions have either been

hA
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43
ignored in the past or stipulated as omnidirectional. No specific

functional forms for the beam patterns are assumed, but rather, they

are kept as general frequency dependent expressions. Also included is

the frequency dependent attenuation of sound pressure amplitude due to

sound absorption. The small slope approximation is not made. A

Fresnel approximation is used, and the results for the trnsfer

function pertain to a general bistatic configuration which can then

be easily reduced to either a specular or a monostatic (backscatter)

orientation.

4.
A generalized Kirchhoff approach is used since the vectors R1

4. - ~ 4.

and RT  are not assumed to be parallel, and vectors R2 and RR  are

also not assumed to be parallel. By not assuming R is parallel to

R2 P we are following a Rayleigh approach only in the sense that the

total scattered field at the receive array is represented as the

superposition of plane waves travelling in different directions (sum
4 6  p l t

of all wave modes). When one assumes R is parallel to R2 , this

is consistent with the classical Kirchhoff approach of representing

the scattered field as a superposition of plane waves travelling in

only one particular direction (an individual wave mode), i.e., in the

4. 46direction of R2 *

5.2.2 Analysis. From Equation (5.2-10),one can express the

scattered acoustic pressure field at the receive array at time t =t

as:
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Ps(Rz't ) = f[ G[R 2 r(t)J - )]

S

p[T(t')] G[R 2Jr(tl)) dS , (5.2-17)

where the total acoustic pressure on the ocean surface at r(t!) is

defined as:

pI[r(tj)j + ps[r(t)] (5.2-18)

G('1.) is the free-space Green's function to be specified later, and

RR(t')

tl R (5.2-19)

is the retarded time 37 where RR () is defined by Equation (5.2-12)

and c is the speed of sound in the ocean. The expressions plI( -)

and ps(") refer to the incident and scattered acoustic pressure

fields, respectively. The Kirchhoff approximation will now be used

to obtain an expression for plr(t)] as defined by Equation (5.2-18).

In the Kirchhoff approximation, it is assumed that the ocean

surface is locally plane, i.e., the radius of curvature at all points

on the surface is assumed to be much greater than a wavelength.4 6'4 8

The field on the surface is approximated by the field which would exist

if the surface were replaced by an infinite plane, tangent to the

surface at the point of insonification. Since the ocean surface is

assumed to be in the far-field of the transmit array, Equation (5.2-18)

can be approximated by:



139

pEr(t[)] p[r(t)] + C[r(t)]p[r(tl)] (5.2-20)
I REF i

where t)] is the plane wave pressure amplitude reflection

coefficient evaluated at the point r(t) on the surface. Multiple

scattering effects at the surface have been ignored and it has been

assumed that there is no shadow problem. The fundamental assumption in

the Kirchhoff approximation which limits the validity of the solution

is the extent to which the reflection coefficient C(E , which is

applicable to an infinite plane wave at an infinite plane boundary,

can be used at every point of a rough surface. 3 4 ,46 The boundary

condition represented by Equation (5.2-20) will be a very good

approximation for locally flat surfaces composed of irregularities

with small curvature, i.e., large radii of curvature compared to a

wavelength. 46 In the case of a perfectly smooth surface when

Z = (x,y,t) = 0 , Equation (5.2-20) is exact.

46
The roughness of a surface depends on three parameters:

(1) the height h of the surface irregularities with respect to the

XY plane; (2) the angle of incidence ei measured from the Z axis;

and (3) the wavelength X of the incident field. For randomly rough

surfaces, the parameter h should be replaced by a , the standard

deviation of the height variation of the rough surface. 4 8 According

to the Rayleigh criterion, a random surface is considered smooth if
4 6'48

< 1 (5.2-21)

8 8coseO
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Therefore, from Equation (5.2-21), it can be seen that a surface

approaches being smooth as either UIX - 0 or e 1 ir7/2

A simple criterion for the radius of curvature restriction can

be obtained if one assumes that the roughness of the surface can be

represented by a two-dimensional spatial Fourier series. For example,

consider height variations along the x direction only and let

Z sin IT (5.2-22)

where AMIN is the minimum surface wavelength (see Figure 18) of the

various surface height components along the x direction. The radius

AMIN
of curvature p of Equation (5.2-22) evaluated at 4 s- is:

2
P=AIN (5.2-23)

Therefore, the Kirchhoff restriction requiring that the radius of

curvature be large compared to a wavelength yields the criterion

2

X << A I (5.2-24)

for the boundary represented by Equation (5.2-22). Note that Equation

(5.2-24) is a high frequency condition. That is, the higher the

transmit frequency, the smaller the wavelength X and the better the

inequality given by Equation (5.2-24) will be observed.
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iO

Figure 18. Geometry for example calculation of the radius
of curvature criterion and the shadow prevention
criterion in the incident direction. By definition,
the angles f , ei , and 8 are all positive.
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A simple criterion for the prevention of shadows in the transmit

direction can also be obtained for the surface represented by

Equation (5.2-22). From Figure 18, we have that

0+ a , (5.2-25)

where 0i  is the angle of incidence, a is the angle between the

positive x axis and the dashed line which is tangent to the curve

at the point of inflection P , where x = ,IN , and f is the angle

between the unit vector a normal to the surface at P and the

incident propagation vector k i  In order to prevent shadows, f must

be less than Tr/2 , and since

tan d Z (5.2-26)
dx X-AIN

we obtain, from Equation (5.2-25), the criterion

cotei > 2TI (5.2-27)
A'MIN

for the prevention of shadows in the transmit direction. Fortuin 37

50

indicates that, according to Kinsman, the slopes of sea surface waves

cannot exceed the value of 2/7 . Therefore, this implies that the

angle 8 in Figure 18 is less than 160; i.e., $ < tan- (2/7) = 16'

The major problem before us is the evaluation of Equation

(5.2-17). In order to evaluate Equation (5.2-17), functional forms for

p(.) and G(.-I) must be specified. Therefore, let
I

pDr[k,r(tl) exp[-JkEFFRT(t)]I
prtjJ DT kr~1]RT(tp) (5.2-28)
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and
.+ exp [- kEFFRR(tP) -29

G[R2 lr(tj)] DR[k'r(t)] %(t') , (5.2-29)

where D Tk,r(t')] and DR[k,r(ti)] are the transmit and receive

T 1R II

directivity functions, respectively, projected onto the surface;

kEFF is the complex, effective wave number defined as:

A

kEFF = k - jc(f) , (5.2-30)

where cL(f) is the frequency dependent pressure amplitude attenuation

coefficient (in nepers/m) due to sound absorption, and from Figure 17:

R TI(Y = Ir(t) - Rll (5.2-31)

and

RR(t) = ['(t{) - '21 (5.2-32)

Having specified p(.) and G('IJ) , it is now possible to
I

obtain expressions for the normal partial derivatives of p(-) and

G(" ') . It can be shown that the normal partial derivative of p(-)

as given by Equation (5.2-20) is:

a pttl)] ) C •rk
an nT) - CREF] kEFFPI[r(t]

(5.2-33.)

where it has been assumed that C[r(t')] C (a constant)

IkEFFRT(t) >> 1 , and

*f VDk(t{) ]t
VD 1 

(5.2-34)

(nfi T)kEFFDT[k,(ti)]I



144

Equation (5.2-33) is derived in Appendix C where use has been made of

References 26, 46, 51, and 52.

Since for the ocean-air interface the difference in the charac-

teristic impedances of the two media is so large, the reflection

coefficient is effectively no longer a function of the local angle of

incidence or of position on the ocean surface for that matter. Hence,

the assumption that the reflection coefficient is a constant is very

reasonable; in fact, C RF -1 . With C REF -1 , Equation (5.2-20)

is equal to zero and Equation (5.2-33) is a maximum which are correct

results for a pressure release boundary like the ocean surface. The

assumption that Ik FR (ti)l >> 1 is commonly referred to as the

'lot far-field assumption and indicates that the transmit array is many

wavelengths away from the ocean surface. Equation (5.2-34) stipulates

that the ratio of the magnitude of the gradient of the projected

transmit directivity function to the projected directivity function

itself must be small compared to the reciprocal of the wavelength.

The inequality given by Equation (5.2-34) will be observed best over

the projected beamwidth of the directivity function. In addition,

Equation (5.2-34) is a high frequency condition similar to the radius

of curvature criterion because of the appearance of k EFin the

denominator. As the frequency of the transmit signal increases, k EF

also increases, and as a result, the left-hand side of Equation (5.2-34)

decreases and the inequality is better observed. Although high

frequencies make directivity patterns more directional (i.e., the

beamwidth decreases as the frequency increases 24), the gradient of the

projected transmit directivity function over its beaxuwidth will still

remain small since it was assumed that the ocean surface was in the
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far-field of the transmit array. For example, consider an arbitrary

directivity pattern D(ku,kv) , where k - 2r/X , u - sin0cosO , and

v = sinesin . The gradient of D(ku,kv) in spherical coordinates

is given by:

VD(ku,kv) (l/r) -D(ku,kv) a, +

(/[rsin)D D(ku,kv) a (5.2-35)

since the directivity function is not a function of range r

Therefore, it can be seen from Equation (5.2-35) that IVD(ku,kv)l

decreases as the range r from the array increases. As a consequence

of the requirement imposed by Equation (5.2-34), the expression for

T- p[r(tI)] as given by Equation (5.2-33) will be a good approximation

for that region of the ocean surface which is insonified by the beam-

width of the transmit directivity function. Equation (5.2-34) is

analogous to the condition (see Tolstoy 
5 3)

V 2D(kukv) << 1 (5.2-36)

k 2D(ku,kv)

which must be satisfied if p = D(ku,kv)exp(-jkr)/r is to be an

approximate solution to the Helmholtz wave equation (V2 + k 2)p - 0

And finally, note that the dot product (f • nT) in the

denominator of Equation (5.2-34) is a possible source of trouble, i.e.,

it may equal zero at some point r(t') on the ocean surface. However,

refer to Figure 18 and to the cone defined by the Z axis and dashed

line which is tangent to the curve at point P . All rays with their

respective directions of propagation ki , and hence, angles of

incidence 8 delimited by this cone satisfy the shadow prevention
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criterion of Equation (5.2-27). Now assume that the transmit array is

positioned in such a way that the various directions of propagation

defined by the beamwidth of its directivity function coincide with

those within the cone. Then, the expression (n^ • nT will never

equal zero, and Equation (5.2-34) will always be finite for at least

those rays emanating from within the beamwidth (note that i kfi T.

Similarly, upon taking the normal partial derivation of G('I")

as given by Equation (5.2-29), one obtains:

-G- I r(tl)] Z + (fi • R)JkEFFG[R2 ir(tl)] , (5.2-37)an 2 1R F 1 1

where it has been assumed that IkEFFRR(ti)I >> 1 and that

In^ VD [k,'(t')]I
R 1 < 1 $ (5.2-38)

n (. nRkFFD[k'r(t')]1I

where

r exp(-JkEFFRR(t)] a [ exp[-JkEFFRR(tj):i .
R(t) A aRNt) RN(t)

(-s) (5.2-39)

since ~ti) RR(l)R is a distance measured in the direction

(-aR) (see Figure 17 and refer to References 26, 46, or 52). Note

the term (^ • nR) in the denominator of Equation (5.2-38). Refer to

Figure 19 and to the cone defined by the Z axis and the dashed line

which is tangent to the curve at point P . All rays with their

respective directions of propagation kS , and hence, angles of scatter

eS delimited by this cone satisfy the criterion

S/
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Z z

P

AMIN
2

7S

Figure 19. Geometry for example calculation of the shadow
prevention criterion in the scatter direction.
By definition, the angles f and e are

Spositive, while the angle B' is negative.
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- cotos > 27ra (5.2-40)

which, if obeyed, prevents the shadowing of the scattered radiation.

With the exception of the minus sign, Equation (5.2-40) is analogous to

Equation (5.2-27). The minus sign is required since 8S > Tr/2 , and as

a result, coto S < 0 . Ai3o note from Figure 19 that the point of

inflection P at x AMIN/2 was used and in order to prevent

shadowing in the scatter direction, If > Ir/2 . Now, assume that the

receive array is also positioned in such a way that the various

directions of propagation defined by the beamwidth of its directivity

function conicide with those within the cone. Then, the expression

(f f R) will never equal zero, and Equation (5.2-38) will always be

finite for at least those rays entering within the beamwidth (note that

ks =kn ).

Upon substituting Equations (5.2-20), (5.2-33), (5.2-37),

(5.2-28), and (5.2-29) into Equation (5.2-17), and dropping the

multiplicative term JkEFF from in front of the integral, one obtains

the random, time-varying transfer function

HRX,t ) = DT[k,r(tj)DR[k,r(tj)]

S

exp{-jkEFFIRT(t') + %(ti) ] }

RT(ti)RR(ti

[' (nT . nR)CREF - (nT + nR) ]dS

(5.2-41)
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of the linear, time-varying, random communication channel consisting

of the ocean surface and a bistatic transmit/receive array geometry as

illustrated in Figure 17. The subscript "REV" denotes surface

reverberation. Note that Ps(R 2,t1 ) H b t ) since a time-harmonic

input signal of frequency f(Hz) was transmitted 3 7 [see Equations

(3.2-16) - (3.2-18)]. The unit vectors n . nT , and n are all

functions of position along the ocean surface. In addition, n is

also a function of the retarded time t' The integration in

Equation (5.2-41) is meant to be performed over that region of the

surface which corresponds to the intersection of the projected beam-

widths of both the transmit and receive directivity functions. It is

interesting to note that when one defines p[rCtl) ] in Equation

(5.2-17) as being equal to incident plus scattered acoustic pressure

[see Equation (5.2-18)], one obtains both of the terms (nT - R)CREF

and (nT + nR) in Equation (5.2-41) [e.g., see Beckmann and

46 48Spizzichino or Ishimaru ]. However, if one defines p[r(t')] in

Equation (5.2-17) as being equal to scattered acoustic pressure only,

then one obtains only the term (n - nR)C in Equation (5.2-41)
T R REF

(e.g., see Tolstoy and Clay 49].

Let us now consider the ranges RT(ti) and RR(tl) which

appear in the denominator of Equation (5.2-41). From Equations

(5.2-31) and (5.2-32), we obtain the following approximations:

RT(tj)= Ir(tj) - R1  
= R1  (5.2-42)

and

R(ti) = Ir(t1) - R2 1 = R (5.2-43)
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where 1R I .land R2 " 1R21 , and where it has been assumed that

Ir(tI ) /'Rj < 1 and lr(t[)/R 2l < 1 . While Equations (5.2-42) and

(5.2-43) are suitable approximations for amplitude attenuation due to

spherical spreading, they are not appropriate for the phase information

represented by the complex exponential appearing in the integrand of

Equation (5.2-41). Therefore, for the phase information, both R T(t)

and RR(ti) will be expressed in terms of a binomial expansion.

Starting with Equation (5.2-31), RT(t{) can be rewritten as

follows:

[r~tI ) =
l 

'R [1t )

or 
(5.2-44)

Rr(ti) = R /i + bT , (5.2-45)

where

bT 2 R-2 R , (5.2-46)

rr(t')! x + y + (x,y,tI) (5.2-48)

and

r sine cosP x + sine singly + cos z (5.2-49)

is the unit vector of R (see Figure 20). Note that the azimuth

angles I and 2 are measured in a counterclockwise direction from

the positive X axis. In order to use a binomial expansion on

ALI
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z Y2

Figure 20. Spherical angles an 2 4' and

the unit vectors 1and i 2 frespectively.
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Equation (5.2-45), two questions must be answered. First, is the

inequality lb TI < I satisfied, and second, if the inequality is

indeed observed, how many terms in the expansion should be used?

Some insight into the answers to these two questions can be obtained

by referring to Figure 21. The position vector r(t!) is shown

lying in the XY plane. Since the ocean surface will eventually be

projected onto the XY plane later in the analysis, this situation is

representative of our problem. The angle C is the beamwidth of the

directivity pattern, and y is the grazing angle. From Figure 21 and

the Law of Sines,

r(t ) sn(/2)

= -(5.2-50)
R
1 sin(y -

Substituting Equation (5.2-50) into Equation (5.2-46), and taking the

absolute value of both sides of the resulting equation yields:

j bTI =  sin(t/2) r sin(c/2) - 2cos(- - y)1

sin(y - f) Lsin(y - E) I I

(5.2-51)

where (n - y) is the angle between I and r(1

Table 3 lists values of IbTI computed from Equation (5.2-51)

for several different values of beamwidth e and grazing angle y

One can see two trends from the data of Table 3. The inequality

Ib T I < 1 is observed best for narrow beamwidths and for grazing angles

approaching 90@. However, with the exception of y - 90* , the values

of IbT1 are not, in general significantly less than 1. In fact, for
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IZ
z

R1

Figure 21. Geometry for the calculation of the binomial
expansion criterion. The angle C is the

beamwidth of the directivity pattern and

y is the grazing angle.
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TABLE 3

VALUES OF THE BINOMIAL EXPANSION FACTOR IbTI

FOR DIFFERENT COMBINATIONS OF BEAMWIDTH e

AND GRAZING ANGLE y

E (deg) y (deg) 'TI

10 30 0.4

10 45 0.209

10 60 0.117

10 90 0.008

20 30 1.137

20 45 0.52

20 60 0.279

20 90 0.031

30 30 2.732

30 45 1.001

30 60 0.5

30 90 0.072
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E= 200  and Y=30 0 , C-300 and Y=30° , and E-30° and

y = 450 IbTI > 1.0 , and as 'a result, a binomial expansion is not

valid for these combinations of parameters. Therefore, Equation

(5.2-45) will be expanded to include second order terms (Fresnel

approximation) as opposed to only first order terms (Fraunhofer

approximation).

Assuming that lb TI < 1 , Equation (5.2-45) can be expressed as

bT bT

RTt)= R, 1 + ,(5.2-52)

and upon substituting Equations (5.2-46) through (5.2-49) into

Equation (5.2-52), one obtains:

(1 - sin 2 1cos2 2) 2!R (t') = R I + 2R I

Tl1 1 2R+

(i - sin 2 1sin 2I) 2

2R1  +

sin 2 12

2R $2(x'y'tl) -

{x sineicOSl 1 + R n8lsinn +

$(x'y'tl) 1
RI  cosel + y sin0isin I •

1 + RI cose1 ] + &(xY,t )cos01 }
(5.2-53)

-i
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where individual and cross product terms involving x , y , and

E(x'y't!) raised to powers higher than 2 were not included in the

expansion. Equation (5.2-53) can be simplified considerably if one

4.
orients the XYZ coordinate system in such a way that R1  lies in

the XZ plane, i.e., let ni T " With IP IT, Equation (5.2-53)

reduces to:

cos e1  2 1 2 sin 2 1  2

x sinR 1 1 1 R

E(x,y,t') cosa 1 } (5.2-54)

where the cross product terms involving xy and y (x,y,tI) have1

cancelled out. Assuming that

si21 2 <<i(5.2-55)

2R

2 2
where a E{E (x,y,t')} is the variance of the zero-mean, random

process, E(x,y,t') , and

Cosa- « 1 , (5.2-56)

then Equation (5.2-54) further reduces to:
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cos 2O 1 2
R(t) R, rI  r(t ) + 2 +1 2
Ti 1R 2R

(5.2-57)

where

£i "(t{) = -xsine1 + (x'Y't{)cosO1  (5.2-58)

and 4 .

Similarly, RR(ti) can be expanded as:

~2

R (t') [Ri~ bR2 ] lbRI< (5.2-59)
bR 2

Rt) 1 R2  i+ 2 8 ; bR I < 1 5.-9

where

~ ~ t)~2 r r(t')2 1
bR = R - 2 (5.2-60)

2 2

and

£2 OOs + sinO2 sinp 2 9 + cosO2 z (5.2-61)

is the unit vector of R2 . Substituting Equations (5.2-60), (5.2-61),

(5.2-47), and (5.2-48) into Equation (5.2-59) yields:

(1 - sin 2e2cos
2 

2 ) 2

RR(t) R + 2R2 x +

2 1 2 sin 0

(I -sin 292sin'2 2~ 2 i 2 -

R2  + 2R2  2(x,Yt)

{ x sin62 cosP 2 [1 + -y- sin02 sin 2  +

2 2 R2 2/
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R 2  c°6 2s + y sine 2sin 2

1 + R cosJ + E(x,y,t)cosa2  , (5.2-62)

where, as before, individual and cross product terms involving x

y , and E(x,y,t') raised to powers higher than 2 were not included

in the expansion. Assuming that

sin2e 2 a 2 1<< 
(5.2-63)qt2R 

2

cos2 «< (5.2-64)

and, in addition, that

L_ sine sin2 « 1 , (5.2-65)
R 2 2
2

Equation (5.2-62) reduces to:

(1-sin2 62cos2 2) 2
R r r(t) + x +RR(tI) 2.2 2R

(1 - sin2  in22) 2

2R 2  y (5.2-66)

where

r2 1r(tl) x sine2cos 2 + y sine2sinW2 + (x,y,tp)cos82.
(5.2-67)
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Note that since 1 T , if one chooses p2 - 27r for a specular

geometry or 2 - w for a backscatter geometry, then the left-hand

side of Equation (5.2-65) equals zero (see Figure 20).

Upon substituting Equations (5.2-42), (5.2-43), (5.2-57),

(5.2-58), (5.2-66), and (5.2-67) into Equation (5.2-41), the following

expression for the transfer function of ocean surface reverberation is

obtained:

exp(-jk EFF[R + R2])

RF 1J DT [k r(t )]DRkr(tj)]

exp{-JkEFF [X + my + n&(xy,t,)]}

exp{-JkEFF[ (9f/2)x
2 + (mf/2)y

2]}

* T - fR)CREF - T+

(5.2-68)

where

Z = sine1 - sin 2cos@2 , (5.2-69)

M= - sin02sinoP2  , (5.2-70)

n = - (cosO1 + cose2) (5.2-71)

cos 2 e1 (1 - sin262 cos
2 

2)

f R R (5.2-72)

and 2I - sin2a2sin2

m = R +  R 2  (5.2-73)

II I 1%.. . 'Ii . . Ii ' .... .. .t . .... . .... .......... . ,,f R1.-=. . . i-
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where the subscript f denotes "Fresnel approximation term." If a

Fraunhofer approximation happens to be sufficient for a particular

problem, one can simply let the Fresnel coefficients Lf and mf

equal zero.

Our efforts will now be devoted to simplifying the term

IT REF ( + n^ )]dS (5.2-74)

which appears in the integrand of Equation (5.2-68).

The difficulty with Equation (5.2-74) is trying to specify n-

n T and nR which are functions of position along the randomly rough,

time-varying, ocean surface S . This problem can be avoided by

projecting S onto the XY plane as follows.

Let vectors a(x,y) and (x,y) be defined as:

+ A
a(x,y) = fT(x,y) - flR(x,y) = ax(X,y)i +

a (x,y)^.+ a (X,y)^ (5.2-75)
y y z

and

b(x,y) n fT(x,y) + fiR(x,y) b x(x,y)k +

b (x,y)g + b (x,y)i (5.2-76)y z

and also express the unit vector fi(x,y,t') in rectangular components,

i.e.,

n(xy,tl) nx(x,y,tl)i + n' +n(xy'tl)

(5.2-77)



161

Since an infinitesimal surface area element dS is related to its

projection onto the XY plane dxdy by4 8,49 ,51

dS - dxdy (5.2-78)
n

z

and since

nx
x _(xy't) (5.2-79)
n axz

and

n a
n -- (x,y,t{) (5.2-80)

z

then, substituting Equations (5.2-75) through (5.2-80) into Equation

(5.2-74) yields:

a 1 -(x,y,tl) -
ay - (x~y~t I ) + az CREF

b E (x'y't') -

b a t'xy~tl ) + b dxdy (5.2-81)

or

I(xY~tl) = _ Vxyyt i) 1 [REFa

[C REFaz - bz] ) dxdy , (5.2-82)



162

where V XYis the two-dimensional gradient defined as:

V - +--- (5.2-83)

Substituting Equation (5.2-81) into Equation (5.2-68) yields:

H ~exp(.-ikEFF [Rl1 + R 21) f ,. kxy)Rkxy
HRil) R IR 2 DTkxy)Rkxy

exp{-jk y[IZx + my + n (x,y,t9]}I

exp{-jk EFF ((Z f /2)x 2 + .(Mf/2)y 
2 1

{ a[ a x~y~t) +-z

ay -5- 1(~~~ + a REF

[-b~ !- E(X'y't{ -

b .1(~yr) + b J}dxdy, (5.2-84)

where D T(k,x,y) and D R(k,x,y) are the transmit and receive

directivity functions, respectively, projected onto the XY plane.

Recall that the coefficients a ,a ,a , b , b y, and b

are also functions of x and y

Let us consider the physical significance of Equation (5.2-82)

for a mnoment. This equation indicates that the integration along the
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ocean surface itself dS has been replaced by an integration in the

XY plane dxdy . However, the price we pay is the need to evaluate

the gradient of the random process C(x,y,tj) . This problem can be

avoided by performing an integration by parts to be discussed later,

but for now, the presence of the gradient yields some important

information.

For a perfectly smooth ocean surface (i.e., an infinite plane

boundary), E(xy,t') = 0 , and hence, V (X'yt) = 0 . Therefore,

Equation (5.2-82) reduces to:

1(xyti ) = [C a (x,y) - b (x,y)ldxdy (5.2-85)

for a perfectly smooth ocean surface. Thus, the term [CREFa z - bzI

represents the specular contribution to the total scattered acoustic

pressure field, while the term V y(x,y,t') represents the contribu-

tion due to surface roughness.

The next objective, as mentioned previously, is to eliminate

the partial derivatives of (x,y,tj) by performing an integration

by parts. 46 ,4 8 ,4 9  For example, consider the following double integral

from Equation (5.2-84):

exP(-jk my)exp(-jkF f y2 ) f DT(k,x,y)DR(k,x,y)

y x

exp(-jkEFFZx)exp(-Jk -f x2)a C
EFFEFF 2T xREP

exP[-jkEFn&(x,y,t')] -2 (x,y,t')dxdy . (5.2-86)

EF a
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Although the minus sign appearing before a in Equation (5.2-84)x

is not included in Equation (5.2-86), it will be accounted for later

in the analysis. Perform an integration by parts with respect to the

x integration by letting

u = DT(kxy)DR(kxy)exp(-jkEFF x)exp(-jkEFF f 2)a C

(5.2-87)

and

dv = exp[-jkmn&(x,y,t-)] (x,y,t')dx • (5.2-88)

lNext, perform the following total differentiation:

d (-jk nC(xy tj)I - exp[-JkEFFn (x,y,ti)] +

a I dt'
-- exp[-Jk-E(x,y't) _ (5.2-89)

or

d- exp-jk n(x,y,t) = -jkEn exp[-jkFnE(x,y,t i )]
dx EFF '1 EFF EFF 1

(Xsy'tl) + T (X'Y't')

(5.2-90)

where, from Equations (5.2-19), (5.2-66), and (5.2-67), it can be

shown that:
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1- ___ IS
dt' cse ti  (x'Y'tl) ] -= I n2~* -

(1 - sin 282cos 2 2
R 2 x I +

c o s '2  X Y t )( . - 1

Since the magnitudes of both (cose2/c) and the first term on the

right-hand side of Equation (5.2-91) is << I , and if it is further

assumed that C(x,y,t') is a slowly varying function of time during

the interval of insonification of the ocean surface, i.e.,

Ei (xy'tl) = 0 (5.2-92)

then, Equation (5.2-91) reduces to:

1. c (x,y,ti) . (5.2-93)
dx j a

Note that the magnitude of the partial derivative of C(x,y,t1) in

the x direction may be large. Substituting Equation (5.2-93) into

Equation (5.2-90) yields:

d
d-x exp[jEFFn (x'y tl) 1 =

- (E~ ex[JE~ xYt{)] (xyt)

1 + [(x,y,t ) (5.2-94)
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and upon using Equation (5.2-92), one obtains:

(-jkEFn) - x[j EFF ('Y'1p

- E (x,y,t')dx =dv

(5.2-9 5)

Therefore, from Equation (5.2-95),

exp[j Exy !)
v ~ kFn~xyt) (5.2-96)jk n

EFF

The last piece of information needed for the integration by parts is

du/dx .From Equation (5.2-87),

2
du =C exp(-jk Zx)exp(-jk LL- x2)

REF EFF EFF2

{ jk EFF axD T (k,x,y)D R (k,x,y)[Z + Z f X] +

a D D(k,x,y(xv) + a DR (k ,x,y) Db- T(k,x,y) +

D T(k,x,y)D R(k,x,y)t axf . (5.2.97)

With the use of Equations (5.2-87), (5.2-88), (5.2-96), and

(5.2-97), the integration with respect to x in Equation (5.2-86) can

be expressed as.

XU

fdx C - REF [J + 1 (5.2-98)
x L kEFFn 1 2
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where

J a D (k,x,y)D (kx f~ep{ ik RX nr(x~y't{)I1
1 x T R~k X,~X1 EFFLZ

exp(-jkEF f2 (5.2-99)

and

.XU2

2x{j =k nE(x,y,t!)1Iexp(-jkEF ex - fx
2 fXL F F2

{jk EFF a xDT (k,x,y)D R(k ,x,y)[9Z + X. f X]

a xD (~xy)- D R(k,x,y) -

a D (kx,y) -I-D (kx,y)-
x R ' 3x T

DT(k,x,y)DR(k,x,y) -~a }dx (5.2-100)

where the lower and upper x limits x L and xUdefine the extent

along the X axis of the conmmon region of overlap between the transmit

and receive projected beamwidths.

The J1 term is referred to as the edge effect 46and its

magnitude can be approximated by the absolute value of the difference

between the products of the two beam patterns evaluated at the upper

and lower x limits, i.e.,

Jill= ID T(k,xUL,y)D R(k,xd,y) -- D T(k, xL y)D R(k,xL,y)I

(5.2-101)

since the complex exponentials are phase terms of unit magnitude.
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The J2 term defined by Equation (5.2-100) can be simplified

by deciding which terms appearing inside the braces, { }, are dominant.

Note that the first term inside the braces is the only expression which

includes the parameter kEFF whose magnitude IkEFFI >> 1 for high

frequencies. Since it has been previously assumed that the magnitudes

of the gradients of the beam patterns are small over their respective

projected beamwidths [see Equations (5.2-34), (5.2-35), and (5.2-38)],

then the second and third terms within the braces of Equation (5.2-100)

are negligible compared to the first term. Assuming also that the

fourth term within the braces is negligible compared to the first,

Equation (5.2-100) can therefore be approximated as:

J2 = EFF j exp{-jkEFF x + nE(xy t')]}

XL

exp(-jkEFF-- x2)

a axDr(k'x'y)DR(k'x'Y)[k + Z fx]} dx . (5.2-102)

It can be seen from Equation (5.2-102) that the magnitude of

J2 depends upon kEF F  and the integral of the product D T(k,x,y)

DR(k,x,y) over the entire range of the x limits. By comparing J2

[as given by Equation (5.2-102)] with J [as given by Equation

(5.2-99)], it is clear that J2 is the dominant expression. As a

result, Equation (5.2-98) becomes:

dxj F ) J2 (5.2-103)
J EFFn

XL
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where J is given by Equation (5.2-102). Substituting Equations
2

(5.2-103) and (5.2-102) into Equation (5.2-86), and multiplying the

result by (-1) to account for (-a) , yields:
x

CREF
--R--) f f DT(k,x,y)DR(k,x,y)

xy

exp{-jkEFF([x + my + nE(x,y,t')]}

exp{-jkEFF[(Zf/2)x 2 +(mf/2)y 2 ] }a x [Z + Z fxldxdy

(5.2-104)

which is an approximation to the first surface integral of H(f,tI)
REV

Not as given by Equation (5.2-84). The remaining surface integrals of

Equation (5.2-84) involving the ay , bx , and by terms can also

be approximated by analogous expressions by following the procedure

just outlined. By doing so, the following general expression for the

random, time-varying, transfer function of ocean surface reverberation

is obtained:

H (f't ) exp(-jkgEFF [RI + R2])

REV 1 R21R2

f f DT(kx,y)DR(k,x,y)K(xY)

xy

exp{-jk[EFF[x + my + n (x,y,t')]}

exp{-JkEFF[(Zf/2)x 2 + (mf/2)y 2 ]}dxdy

(5.2-105)
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where

K(x,y) K1 (x,y) - K2 (x,y) + K3 (x,y) - K4 (x,y)

(5.2-106)

K (X,y) = [ax (x,y)(Z/n) + ay (x,y)(m/n) + a z(x,y)]CREF

(5.2-107)

K 2 (x,y) = [bx(x,y)(9./n) + b (x,y)(m/n) + b (x,y)l]2y z

(5.2-108)

K 3(x,y ) = a x (X,y )f(/n)x + a y(Xy)(mf /n)ylCREF

(5.2-109)

and

K4 (x,y) = [b (x,y / )(mf/n)y] . (5.2-110)

The functional dependence of DT 9 DR 9 and the "a" and "b" terms on

the (x,y) coordinates are given in Appendix D where use was made

of Butkov.
5 4

By making the appropriate combination of assumptions, Equation

(5.2-105) will simplify to the forms of previously published results

for the acoustic pressure field scattered from the ocean surface

[i.e., R(f,t 1 )] obtained by using a Kirchhoff approach. For example,
REV

assume that a Fraunhofer approximation is sufficient so that

Zf = mf = 0 . In addition, make the following assumptions which are

associated with the classical Kirchhoff approach (e.g., see References

42 and 49):

nT ( x y ) = - r

and (5.2-111)

R (xy) = r2

R 2-
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where fI and £2 are given by Equations (5.2-49) and (5.2-61),

respectively. Upon substituting Equation (5.2-111) into Equation

(5.2-75), it can be shown that

a (x,y) = 2

a (x,y) = mY
(5.2-112)

and

az (x,y) = n

where £ , m , and n are given by Equations (5.2-69) through (5.2-71),

respectively. Similarly, substituting Equation (5.2-111) into

Equation (5.2-76) yields:

b x(x,y) = sine1 + sinO 2cos 2

by (xy) s 2 2 (5.2-113)

and

b z (x,y) = - cose + cose 2

If Equations (5.2-112) and (5.2-113) are substituted into

Equations (5.2-107) and (5.2-108), respectively, one obtains:

K1(x,y) = F( I , 2 ,2)CREF (5.2-114)

and

K2 (x,y) = 0 , (5.2-115)

where

A 2(1 - sine1sine 2cos* 2 + coslcosO2)
F( 1,e2,502) _ (cOse1 + cos9 2)

(5.2-116)
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Using the results of Equations (5.2-114) and (5.2-115), and noting

that K3 (x,y) - K4 (x,y) - 0 when If - mf 0 , Equation (5.2-105)

reduces to:

exp(-JkEFF[R 1 + R21)
H(f,t) =R
REV R2

F(O1 e 2 02 )CREF f f DT(kxy)DR(kxy)
xy

exp{-jkEFF[Ix + my + n&(x,y,t')]}dxdy

(5.2-117)

which is in the same form as the Kirchhoff solutions presented in

References 42, 48, and 49.

It is interesting to note that when the approximations given by

Equation (5.2-111) are made, the term K2 (x,y) = 0 . The presence of

the K2(x,y) term in Equation (5.2-106) is due to the form of

Equation (5.2-18), i.e., the acoustic pressure field on the ocean

surface was set equal to incident plus scattered acoustic pressure.

Tolstoy and Clay49 also used the approximations given by Equation

(5.2-111), but they defined the acoustic pressure field on the ocean

surface as equal to scattered acoustic pressure only. Therefore, when

a Fraunhofer approximation is used in conjunction with Equation

(5.2-111), it does not matter whether the right-hand side of Equation

(5.2-18) equals incident plus scattered or scattered pressure only--the

final results are identical. This will not be true for the Fresnel

approximation as is demonstrated next.
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Another simplified version of Equation (5.2-105), which appears

frequently in the literature, can be obtained by using a Fresnel

approximation in conjunction with Equation (5.2-111) for a specular

orientation between the transmit and receive arrays. For a specular
geometry, 61 = 02 and 2 = 27 since 0i = T .

As a result of using the assumptions given by Equation (5.2-111),

the ax , ay , and az terms are given by Equation (5.2-112); and for

a specular geometry, they reduce to:

a (x,y) = a (x,y) = 0x y

and (5.2-118)

a z(x,y) = - 2 cos61 I

and the bx 9 by , and bz coefficients given by Equation (5.2-113)

become:

b x(x,y) = 2 sin6 1

and (5.2-119)

b (x,y) = b (x,y) = 0y z

Also, for a specular geometry,

2. = 22 1 R 2) (5.2-120)

1 2

and (R1 + R2 )
mf = R R (5.2-121)

Substituting Equations (5.2-118) through (5.2-121) into

Equations (5.2-107) through (5.2-110) yields:
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H(f,t) exp(-jkEFF[R1 + R2 ]) k
REV ' R1 R2  DT(kx'y)DR(k 'x 'y )

xy

exp{+JkEF. (x,y,ti)2cose1 }

exp{-JkEFF[(Rl + R2)/(2RiR2)][x 2Cos281 + y2 D

EF 1 21RcsI +

2CREFcas + x sine cosO 1 +R 2) dxdy

RF 1 1 1 (R 1R 2)

(5.2-122)

With the exception of the second term within the braces, Equation

(5.2-122) ig in the same form as the Kirchhoff solution presented in

43McDonald, for example. The additional term or "information" appearing

in Equation (5.2-122) is due to the fact that Equation (5.2-105) was not

based on the "small slope approximation" while the solution presented
43

in McDonald, for example, was. In addition, Equation (5.2-105) was

based upon setting the acoustic pressure field on the ocean surface

equal to incident plus scattered acoustic pressure and this gives rise

to the "b" terms as was discussed earlier. However, the transfer

function presented in McDonald4 3 was based upon setting the acoustic

pressure field on the ocean surface equal to scattered acoustic

pressure only.

Besides a specular geometry, it is clear that the assumptions

most responsible for simplifying Equation (5.2-105) are those given by

Equation (5.2-111). The next obvious question then is what does the

transfer function given by Equation (5.2-105) look like when the

assumptions given by Equation (5.2-111) are not made, i.e., when the

"a" and "b" terms are indeed functions of x and y [refer to
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Appendix D, Equations (D17) and (D18)]. In particular, let us compare

HR(fE I  , as specified by Equations (5.2-105), (D17), and (DI), for

both a specular and backscatter orientation to previously published

results for the transfer function which were based upon the classical

Kirchhoff assumptions represented by Equation (5.2-111).

For a specular orientation, 8i = e2 = e 2 = 2 since

S, and R = 0 (see Figure D-2). Also, assume for simplicity

that both the transmit and receive beam patterns are untilted so that

T = R = , where S = - 8 . Therefore, Equation (D17) reduces to:

a RT(x,Y) + RR(xy) +
la(xY) = X RT(xy) RR (x,) +

sine [ RT(xy) (xy)

a - r RT(x,y) + PR(xy) (5.2-123)
Sa(X,y) = y [ RT(x,y)R R (X,y)

and

a (X,y) = - cose ) + 2

z I R~x~y) R R(x'y)

for a specular orientation, and Equation (D18) reduces to:

b (x,y) =- [ RT(X,Y) -R R(x;Y) 1+
sn RT(xy) % (xy) ] (5.2-R24)

RRb[ R ]
R R(x,Y) - RR(x,Y) 1

(X,y) = -y RT(x, y) % (x,y) . (5.2-124)
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and

bz(xy) - cosO- R(x,y)l

Equations (5.2-123) and (5.2-124) were obtained by choosing the

positive sign (+) for wT(x,y) in Equation (D4) and the negative sign

(-) for w R(x,y) in Equation (D12). From Equations (5.2-69) through

(5.2-71), we also obtain:

(5.2-125)

n = - 2 cose

and Zf and mf are given by Equations (5.2-120) and (5.2-121),

respectively for a specular geometry.

For comparison purposes, one need only compute the quantity

K(x,y) as defined by Equation (5.2-106) since the remaining terms in

Equation (5.2-105) are identical in form to previously published

results. Upon substituting Equations (5.2-120), (5.2-121), and

(5.2-123) through (5.2-125) Into Equations (5.2-107) through (5.2-110)

and letting CREF - I , Equation (5.2-106) becomes:

K(x,y) = 2 cosO R 1  + [-2-os+ y2 1 1
R T(X,Y) 1. J

2( + x si O(RI + R2 )
RI1R 2 RT(X,y )  + RiTcs (x,y)R 2

(5.2-126)

for a specular orientation. The transfer function appearing in

McDonald,4 3 for example, contains only one integrand term for a
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specular orientation; namely, 2 sini which is equal to -2 cose since
= 8 - 1 in our notation. Therefore, the term 2 sin in McDonald4 3

2

is analogous to the first term in Equation (5.2-126). It is also

instructive to compare Equation (5.2-126) with the expression within

the braces of the integrand in Equation (5.2-122). Recall that Equation

(5.2-122) was obtained from Equation (5.2-105) by using the classical

Kirchhoff assumptions given by Equation (5.2-111). The first and

second terms within the braces in Equation (5.2-122) are analogous to

the first and third terms, respectively, of Equation (5.2-126).

One can therefore see that Equation (5.2-126) contains additional

-important information represented by the middle expression involving

2 2
x and y . Note that for shallow grazing angles, i.e., as 8 - 7r/2

(see Figure 20), cosO - 0 and i/cos9 . Thus, H(f,t1 ) , asREV

given by Equations (5.2-105) and (5.2-126), will be greater in

magnitude for a specular orientation than the other previously derived

transfer functions obtained from the classical Kirchhoff approach.

This is encouraging since Horton and Melton 41 reported that the

Kirchhoff approach, in conjunction with the Fresnel and small slope

approximations, began to fail for a specular geometry at a Rayleigh

parameter larger than 2, and predicted values for the scattering

coefficient that were systematically smaller than the experimental

values. The Rayleigh parameter is equal to 2kasin for a specular

geometry where i is the grazing angle.
40'41'4 4

For a monostatic (backscatter) geometry, 8 = 82 =

S= 2 - T , R I = R 2 = R , RT(x,y) = RR(x,y) - R(x,y) , and

nT(xy) = - xR (xy) . As before, it will be assumed that both the
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transmit and receive beam patterns are untilted so that 8 8 = 

where 8 r-- . It can be shown that

K() - 2 R +2 sinecosO tan +
coseR(x,y) R(x,y) R(x,y)

2R(xy)R X2 cs + y  l (5.2-127)

for the backscatter case. The transfer function derived in Clay and

Medwin 34 contains only one integrand term for the backscatter case;

namely, 2/cose 1 which Is equal to -2/cosO since 01 = 7 - 9 in
Mdn34

our notation. Therefore, the term 2/cosS 1  in Clay and Medwin is

analogous to the first term in Equation (5.2-127). One can also

compute the "a" and "b" terms according to Equations (5.2-112) and

(5.2-113), respectively, for the backscatter geometry as was done for

the specular geometry. Using Equations (5.2-112), (5.2-113), (5.2-69)

through (5.2-73), and (5.2-107) through (5.2-110), Equation (5.2-106)

becomes:

2 + 2x sinecos6 (5.2-128)
cos R

which is analogous to the first and second terms of Equation (5.2-127).

As was apparent with Equation (5.2-126) for the specular

geometry is also true with Equation (5.2-127) for the backscatter

geometry. That is, Equation (5.2-127) contains additional important

2 2
information represented by the last expression involving x and y

Therefore, H(f,t as given by Equations (5.2-105) and (5.2-127),REV

will be greater in magnitude for a backscatter orientation than the

iI
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other previously derived transfer functions obtained from the classical

Kirchhoff approach. For example, see Parkins4 7 who indicates that his

predicted backscattering strengths were much lower than experimental

values for very rough surfaces, especially at small grazing angles.

Parkins' expression for scattered acoustic pressure was based upon

the Kirchhoff approach in conjunction with the Fraunhofer approximation;

however, he did not make the small slope approximation.

Another important point worth mentioning again is that the

transmit and receive beam patterns can be projected exactly onto the

XY plane (see Appendix D). In previously published works (e.g., see

References 14, 43, 44, and 55), a Gaussian form for the projected

transmit beam pattern was commonly assumed for mathematical convenience.
55

However, as was pointed out in Zornig and McDonald, the fact that the

actual projected transmit and receive beam patterns are not likely to

be Gaussian when doing experimental work leads to a major source of

error when comparing theoretical predictions with experimental results.

5.3 Second Order Functions

5.3.1 Two-frequency correlation function. Since the transfer

function given by Equation (5.2-105) is random, a more appropriate

expression to work with is the two-frequency correlation function

defined as:

1(flf 2,tlt 2) E E{H(fl,t 1)H*(f 2 ,t2} , (5.3-1)

where E{.} is the expectation operator and the asterisk denotes

complex conjugation. By defining the expression Z(k,x,y) as:

Z (k,x,y) D DT (k,x,y)K(x,y) DR (k,x,y) , (5.3-2)

1
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where K(x,y) is given by Equation (5.2-106), Equation (5.2-105) can

be rewritten as:

exp(-jkEFF[R 1 + R2 ]) r -
H(f, C -- RIR2F Z (k,x,y)

REVR 1 R2 f'
xy

exp{-jkEFF[kx + my + nE(x,y,t{)]} •

exp {-kF [ ) x 2 
+ { MfJ y2f dxdy

(5.3-3)

With the use of Equation (5.3-3), and by replacing f1  with

(f + f ) and f2 with (fl + f ) Equation (5.3-1) becomes:

~' e'Ki.~2 =exp{ILj [kEF- FF[R +R2
R (f +  f ' f, + f tilt 2  

EF 1(R EIR 2)21

Z 2 [f + f  ]
1 R9

X Il x2 Y2
• 2i[f' + f ¢  ,X, )

" Z T~f c +f]'x2'Y2

r r2 * 1 2

exp -j LkEFF x1 - kEFF 2x 2

2
exp -j [f kEFy -xEF2 j

2 EF 1EF 2 * 21'

exp Mf k L'F 21 _-*
-T ~ 1 EFF11 EF 2 2J

dx2dY2 dxldy1 , (5.3-4)
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where f is the center or carrier frequency of the bandpass trans-C

mitted signal, f and f' correspond to frequency deviations from

f [see Equation (3.2-20)], and the characteristic function 0 (v,,v 2)c ' 1' 2

is given by:

S(v 1 , 2) = E{exp(i[vl( Ylt!) + v2 (x2 y2 ,t))}

(5 3-5)

where

V1  = - nk EFF (5.3-6)

2 = + nkEFF , (5.3-7)

~2i(f 4 f )
kEFF ( c ja(f+f ) (5.3-8)

kEF1 c c

and

k 2T(f' + fc)
EFF - C + ja(f' + f) (5.3-9)

Equation (5.3-4) is the general expression for the two-frequency

correlation function of the ocean surface-scatter communication

channel. As was discussed in Chapter IV, R (f + f, f' + fc titt2 )

contains information concerning the amount of correlation which exists

between the acoustic pressure fields H(f + fc,t) and H(f' + fct)

at the two different frequencies f + f and f' + f for tI = t2C c 1

or the amount of correlation between H(f + fc,t) and H(f + fc,t 2)

at the two different times t1  and t2  for f f' . Both the

coherence time and the coherence bandwidth, and hence, the frequency

spectrum and time delay broadening associated with surface reverbera-

tion can be computed from Equation (5.3-4).
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If Equation (5.3-4) can be reduced to a function of Af - f - f'

and At = t1 - t ; i.e., if H(f,t) can be shown to be wide-sense

2' REV

stationary in both frequency and time, then the surface reverberation

scattering function can be obtained from RH(Af,At) via a two-
REV

dimensional Fourier transformation [see Equation (2.3-51)].

5.3.2 Surface reverberation scattering function. Equation (5.3-4)

can be simplified by making the following assumptions. Let us first

assume that the bandpass transmit signal is narrowband so that

Ifcl >> IfI and Ifcl >> If'I . As a result,

z 27[f C ,x1 sy Z(k,x 1 ,Y1 ) (5.3-10)

* [2T[f' + fi

Zc 'x2'y2  Z (k,x2,Y2) , (5.3-11)

a(f + f ) c (f ) , (5.3-12)
c c

a(f' + f ) ca(f ) (5.3-13)

c c

and
* = 2

k k k , (5.3-14)
EFF 1EFF2

where k = 27rf /c.c

By substituting Equations (5.3-8), (5.3-9), and Equations

(5.3-10) through (5.3-13) into Equation (5.3-4), and letting

x1 = x2 + Ax and yl = Y2 + Ay , one obtains:
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R. (f +f ,f'+f 't1, 2 et- ( 1 R]
11REv 2 (R 1R 2) 

2

exp{-2ct(f c)(RI +R 2 ]}

J-JJf (kAxLy)exp { -jk [ ZAx + MAY + I'( )2  +

'mf ) (tly) 23

exp -ct(f) L AX + mAy + ( -i- (Ax) 2 +

[- ) (AY) 2 ]}dAxdAy (5.3-15)

where

J(k,Ax,Ay) =ffZ(k,x+AX,Y+AY)Z (k,x,y) ID (V,9v 2 )

x y C

exP{~iZ! x + my + -- x+( -yE

exp { 2c(f)d[ 2.X+MY+ [92f x 2  +

('f) XA+(+ 2+f fif3 yAyJ

exp {f - +f [iJ 2xAx + [-j2YAY] } dxdy
(5.3-16)

and Af f V f
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Now, let us turn our attention to the characteristic function

appearing in Equation (5.3-16); namely, O(v1 , 2 ) as given by Equation

(5.3-5). Since the attenuation due to the raniom deviations of (x,y,t)

from the XY plane is negligible in comparison with the other terms

contributing to attenuation, one can set a(f )-0 in Equation (5.3-5).
c

If it is also assumed that E(x,y,t) is Gaussian, zero-mean, and wide-

sense stationary, then it can be shown4 4 that Equation (5.3-5) becomes:

{ 27r[f + f] )2

(Ax,Ay,At') =exp {- c can 32

( R (Ax,tAy,At')j[ f f 3}
c

(5.3-17)

where

RD(Ax,Ay,At') = E[I(x+ Ax, y + Ay, t)(xy~t)]

(5.3-18)

and

E( Cx,y,t)1 = a , (5.3-19)

2I
whee isa ontan, nd t'- ' - t . Using the narrowband

EV 2 Is I cosat ndc'-

1 F 2f f

where

assumption, i.e., f + f f and f + f >> Af , Equation (5.3-17)
c c Creduces to: ( 1

wh r a 2 is a co st nt and1 At tt " - t Us n th .. ....... o,,. w._ a ..
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(Axyt') exp (kn) - R(Ax,,t')

exp {- (kc7 n)2  (5.3-20)f - 2f 2

If Equation (5.3-18) can be shown to be a function of At , then

Equation (5.3-15) becomes a function of Af and At which is our

desired result. Indeed, in Appendix E, it is shown that

RE(Ax,Ay,At') E R (Ax,Ay,At) , where R (Ax,Ay,At) is given by

Equation (ElO), i.e.,

R (Ax,Ay,At) = (1/4) J J W(p,q)exp[+jw(p,q)At •

ep {-j [ - w(p,q) 2 ] Ax}

exP{ [q -w(piq) csnI Ay Idpdq

(ElO)

where W(p,q) is the directional wave number spectrum of the ocean

surface and the corresponding angular frequency (in rad/sec) is given

by:

1/2

w(p,q) = + [ g(p 2 + q2 ) 1 / 2 ] , (Ell)
48

where g is the acceleration due to gravity. The directional wave

number spectrum and corresponding angular frequency are discussed

further in Appendix E. Therefore, Equation (5.3-20) can be written as:
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(Ax,Ay,At') - (Ax,Ay,At)-

exp { - (kan)
2 [ 1 - RE(Ax'Ay'At) ] }

exp {- (ka n) 2  Lf )2J~3 (5.3-21)
i 2 f ]C

where RE(Ax,Ay,/t) is given by Equation (ElO). Thus, the character-

istic function originally given by Equation (5.3-5) has been reduced

to the expression given by Equation (5.3-21).

'oWith the use of Equation (5.3-21), and assuming that f + fc f

in the last complex exponential term in Equation (5.3-16), the two-

frequency correlation function given by Equation (5.3-15) can be

written as a function of Af and At , i.e.,

R(Af,At) = e ( 1 + R2)] J(k,Ax,Ay,Af)
-REV (R1 R2 ) _

exP { - (kcn)2 [ 1 - R E(AxAyAt) ] 
"

exp -jk LAX + MAY + fj(Ax) 2 +

mf
exp{i f]x~ y ( Ai- 2 +

exP ac(f) [ZAX +MAY + (72 2

(2f))(A])32 dAxdAY, (5.3-22)
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where

J(k,Ax,Ay,Af) f j Z(k,x + Ax,y + Ay)Z (kx,y)

xy

exp {- (kh)2 [n )})
f 2 r f £f

exp {j2,, f x + my +(i X2 +

[nI ~2 + (R + Rj}

exp { -t(f) [ x + my + (- i x2 +

f + ( R2  )

exp j -jk 2 -- j2xAx +

f- -2yAy] } dxdy (5.3-23)

The scattering function can be obtained from R(Af,At) by

substituting Equation (5.3-22) into Equation (2.3-51). Doing so

yields:



Rr,) exp -2a (f )(RI+R2
sREV (R R 2

I f J~,XYT (xyo

exp{ ik~Ax + Ay]}

exp { -ik f-J(x) 2 +(mlt y) 2 3}

exp {-a(fc)fk~x + mLy3rJ

exp {a(f Lf ) (ax) 2 +

12tX~ (5.3-24)

where k 2ff f /c

J~kxAyT) bi JJZ(kx + Ax, + AY)Z*(k ,x,y)
x y

exp{-7tb 2t -T T O(x,y)] 2

exp {-jk f ]~ 2xtix +

fI 2yAyj exp { -2a(fc)
z+ my + f )- x2 + X 3 +

mf~~ ~ ~ } 2+ M A dxdy, (5.3-25)
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To(x,y) = [ [x+ my + [-2 +

mf y2 + (RI R2 )] , (5.3-26)

b = c/(na 2/T ) (5.3-27)

and

S exp I [ R (Ax'Ay',At) 2

(Ax,Ay,) = - (k aYn)
2  [1 J

exp(-j2TroAt)dAt (5.3-28)

Equation (5.3-24) is the scattering function of ocean surface

reverberation. It determines how the input signal's power will be

spread in round-trip time delay T (sec) , and frequency 0 (Hz) after

being scattered from the ocean surface.

The spread in round-trip time delay is due to the presence of

the Gaussian function in T appearing in the integrand of Equation

(5.3-25) and to the variety of possible propagation paths which exist

between the transmit and receive arrays as specified by Equation

(5.3-26). These paths are associated with different portions of the

insonified area of the surface. The most obvious propagation path is,

of course, (R1 + R2 )

And from Equation (5.3-28), it can be seen that the frequency

spread is due to the time variations or motion of the ocean surface

itself as characterized by R (Ax,Ay,At)
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McDonald and Tuteur, 4 4 and Tuteur, McDonald, and Tung45 also

derived expressions for the ocean surface reverberation scattering

function. Their scattering functions were based upon a Fresnel

corrected Kirchhoff integral and a small slope approximation and

pertain only to a specular geometry. In addition, they did not include

a receive directivity function and they assumed a Gaussian functional

form for the projected transmit beam pattern. And furthermore, they

assumed very specific models for the ocean surface rather than relating

their scattering functions to the general form of the directional wave

number spectrum.

In contrast, the surface reverberation scattering function given

by Equation (5.3-24) is applicable to a general bistatic geometry. As

a result, expressions for both the specular and backscatter geometries

can easily be obtained from it. Equation (5.3-24) is a result of a

generalized Kirchhoff approach which includes a Fresnel corrected

Kirchhoff integral, no small slope approximation, and the Rayleigh

hypothesis that the scattered acoustic pressure field can be represented

as a sum of plane waves travelling in many different directions. In

addition, the transmit and receive directivity functions are general,

frequency dependent expressions. The necessary transformation equations

which will project both the transmit and receive directivity functions

exactly onto the xy plane are provided in Appendix D. And finally,

the scattering function given by Equation (5.3-24) is dependent upon

the general form of the directional wave number spectrum. Hence, the

44
models of the ocean surface used by McDonald and Tuteur, and Tuteur,

45McDonald, and Tung are automatically included as special cases.



CHAPTER VI

MAXIMIZATION OF THE SIGNAL-TO-INTERFERENCE

RATIO FOR A DOUBLY SPREAD TARGET:

PROBLEMS IN NONLINEAR PROGRAMMING

6.1 Introduction

The main purpose of this chapter is to consider the problem of

maximizing the signal-to-interference ratio (SIR) for a doubly spread

target via signal design. Recall that the SIR for a doubly spread

target is given by [see Equation (3.2-44)]:

00

'lot fjf R S(T,p) X(TM 2 dTd4
-o TRGT

SIR = , (61-1)

R (TM4 x~tAM 2 dTd+N E
J REV o g

where

o

x(TM f x - )exp(+j2Nrt)dt (6.1-2)

is the cross-ambiguity function of the complex envelope of the transmit

signal x(t) , and the complex envelope of the processing waveform g(t);

E f li(t12dt (6.1-3)

g d

-0

bW
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is the energy of the processing waveform; N is the spectral height of0

the complex white noise a(t) , and R S(T,) and R5 (T,) are theTRGT REV

target and reverberation scattering functions, respectively. Target

and volume reverberation scattering functions were both derived in

Chapter IV and a surface reverberation scattering function was derived

in Chapter V. If volume reverberation is the dominant source of

interference, then one would use the volume reverberation scattering

function in Equation (6.1-1). Similarly, if surface reverberation is

dominant, then one would use the surface reverberation scattering

function. However, in the analysis which follows, the mathematical

expressions for the scattering functions will not be substituted into

Equation (6.1-1) for reasons of simplicity and generality.

In contrast, the SIR for a slowly fluctuating point target is

given by [see Equation (3.2-51)1:

E(JI l2 }  X(TI',V ) 12

SIR = , (6.1-4)

f f R g(TM)X(t,' )12 dtdO + N0E

_j REV xg og

where B is a zero mean complex Gaussian random variable which accounts

for random attenuation and random phase shift. The magnitude of b is

assumed to be Rayleigh distributed and the phase of b is assumed to

be uniform. As a result, the magnitude and phase are statistically

independent random variables. The quantity E{jb 2 } includes the

array gains, propagation losses, and scattering cross-se~tion of the
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target. The details of the derivations of both Equations (6.1-1) and

(6.1-4) are discussed in Section 3.2.2.

The SIR optimization problem has been approached in a variety of

ways. The discussion which follows on the next several pages is a brief

survey of the relevant literature on this subject matter. Stutt and

Spafford5 6 considered the point target problem and assumed that the

transmit signal K(t) was arbitrary but given (fixed). They concerned

themselves with maximizing the SIR [as given by Equation (6.1-4)] with

respect to the processing waveform i(t) subject to constraints on the

output signal power X(T', 2')2 and output noise power E~.. Rummier 57

xg g

also considered the point target problem and not only assumed that the

transmit signal was fixed, but that its form was fixed as well.

Specifically, the transmit signal was assumed to be a uniformly spaced

train of rectangular pulses with no phase or amplitude weighting. The

optimum processing waveform was approximated by one which was matched

to the shape of the transmit pulse train, but with complex weighted

subpulses. Consideration was given to the problem of determining the

optimum, complex weighting vector for the processing waveform; i.e.,

57
the weighting vector which maximized the SIR. Rummler assumed in his

analysis that the joint probability density function for the clutter

(the analog of the reverberation scattering function) was a separable

function and that the clutter was uniformly distributed in both range

and Doppler. These assumptions are not true in general and limit the

usefulness of his analytical results.

Unlike Stutt and Spafford,56 and Rummer, DeLong and

Hofstetter1 9 considered the joint optimization problem of finding the
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optimum transmit-processing waveform pair that would maximize the SIR

for a point target subject to energy constraints on both i(t) and

i(t) . They restricted both the transmit and processing waveforms to

be uniformly spaced, phase and amplitude weighted pulse trains of

identically shaped subpulses. However, the shape of the subpulse was

arbitrary. For example, it was not restricted to be rectangular as was

57 57 19
done by Rummler. Like Rummler, DeLong and Hofstetter approximated

the optimum processing waveform by one which was matched to the shape

of the transmit pulse train. In addition, unlike Rummler,57 the clutter

density function (reverberation scattering function) was kept as an

arbitrary, general function of round-trip time delay and Doppler shift.

DeLong and Hofstetter 19 presented an iterative algorithm for finding

the optimum, transmit-processing, complex weighting vector pair which

maximizes the SIR for a point target subject to energy constraints on

both K(t) and i(t) . It appears that their iteration technique was

the first systematic procedure for the design of clutter-resistant radar

waveforms.
58

DeLong and Hofstetter extended their analytical results

obtained in DeLong and Hofstetter19 by presenting an iterative signal

design algorithm for the joint optimization problem for the case where

the energy constraints weie replaced by a dynamic-range constraint,

i.e., the ratio of maximum to minimum transmit signal amplitude was

limited. By introducing maximum and minimum constraints on the

amplitudes of the transmit subpulses, signal energy was also limited

and thus, the energy constraints were no longer necessary. DeLong and
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Hofstetter5 8 formulated the original point target SIR optimization

problem into an equivalent nonlinear programming problem.

Rummler5 9 also generalized his earlier work somewhat (see

Rummler 57) by allowing the subpulses of both the transmit and processing

pulse trains to be complex weighted. However, the pulse trains were

once again composed of uniformly spaced rectangular subpulses.

Similarly, the clutter density function was once again assumed to be

separable, but this time, it was represented by a summation of

elementary clutter density functions; specifically, uniform distribu-

tions of varying amplitudes in range and Doppler. Rummler 59 also

described an iterative technique for finding the optimum, transmit-

processing, complex weighting vector pair which maximizes the SIR for

a point target. The iterative technique of Rummler5 9 is identical with

19
that of DeLong and Hofstetter. However, the analysis and equations

of DeLong and Hofstetter19 are more general. Spafford2 0 also considered

the joint optimization problem for a point target.

Thompson and Titlebaum60 approached the problem of maximizing the

SIR for a point target by assuming that the transmit signal was given

and then optimizing with respect to the processing waveform, subject to

constraints on peak and average power. However, the transmit and

processing waveforms were not restricted to be pulse trains. Further-

more, the clutter was modelled as a finite number of point-clutter

elements. As a result, the clutter density function contained Dirac

delta functions in both range and Doppler. The SIR expression for a

point target was ultimately represented by a finite number of state

variables and use was then made of the Pontryagin Maximum Principle.
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And finally, in a more recent paper devoted to the problem of

maximizing the SIR for a slowly fluctuating point target, Sibul and

Titlebaum 61demonstrated that in the case of Gaussian interference, the

joint optimization of transmit and processing waveforms reduces to the

optimization of the transmit signal only. The maximum-likelihood

receiver for detecting a slowly fluctuating point target return in

colored Gaussian interference is determined by the transmit signal, the

reverberation scattering function, and the level of "he white noise

power spectral density. Only the design of the transmit signal is

required. As noted by Sibul and Titlebaum, 61this simplifying observa-

tion has not been explicitly pointed out in the literature.

All of the research work discussed so far has dealt with a

slowly fluctuating point target. Efforts to treat more complicated

target models in the context of the SIR optimization problem were made

by Kooij 62and Moose. 17They modelled the target as a linear, time-

invariant, deterministic filter. The target could then be considered

as a singly spread target rather than as a point target. The time-

invariant assumption implies no relative target motion, and hence, no

target Doppler. Therefore, the target spread is in round-trip time

delay values only.

Kooij 62 derived both the optimum transmit signal frequency

spectrum and the corresponding optimum processing filter transfer

function that would maximize the ratio of target echo power to

background power, subject to an energy constraint on the transmit

signal. The background was defined as the sum of reverberation and

colored noise. Kooij 62also modelled the reverberation as a linear,
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time-invariant, random filter. Once again, because of the time-

invariant assumption, no relative motion was allowed, and hence, no

reverberation Doppler. Kooij6 2 did not restrict the transmit and

processing waveforms to be pulse trains.

Moose1 7 attacked the problem of maximizing the detection index

for a known signal (i.e., the ratio of target echo power to background

power) by using the optimum receiver and then optimizing with respect

to the transmit signal. The background was aefined as the sum of

reverberation and white noise. The reverberation was represented by

a reverberation scattering function which was assumed to be a function

of Doppler shift only. Moose 1 7 restricted the transmit signal to be a

periodic waveform composed of N harmonics. As a result, this signal

had a finite Fourier series representation. The problem then became

one of maximizing the detection index with respect to the magnitudes of

the Fourier coefficients, subject to an energy constraint on the

transmit signal. Moose 17 formulated the original optimization problem

into an equivalent nonlinear programming problem, as was done by DeLong

and Hofstetter,5 8 and used Rosen's gradient projection method6 3 ,6 4 to

investigate the solution.

As mentioned earlier, the main problem considered in this chapter

is the maximization of the SIR for a doubly spread target as given by

Equation (6.1-1). In our analysis, both the transmit and processing

waveforms will be limited to pulse trains. However, each subpulse of

the transmit pulse train is allowed to be arbitrary in shape and can

occupy the entire interpulse spacing interval if desired. This

represents a generalization of previously published approaches. For
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example, although DeLong and Hofstetter19 ,58 allowed the shape of the

subpulse to be arbitrary, the shape of each subpulse was identical; and

Rummler 57 ,5 9 restricted the duration of each subpulse to be less than

one-half of the interpulse spacing. In this chapter, each subpulse of

both the transmit and processing waveforms is allowed to be complex

weighted. The reasons behind limiting x(t) and i(t) to pulse trains

are as follows.

In order to avoid unrealistic solutions when maximizing the SIR

with respect to both R(t) and i(t) , for example, constraints must

be specifically imposed upon i(t) . For example, these may include

bandwidth and duration constraints which serve the purpose of

restricting the range and Doppler resolution of the admissible transmit

signal. Otherwise, the optimal solution for i(t) may require an

infinite bandwidth or infinite duration or both. Moreover, as DeLong

and Hofstetter1 9 point out:

.. even if it is possible to find the optimum
i(t) and i(t) subject to a given set of constraints,
it is not obvious that they will yield a 'practical'
solution to the optimization problem. The optimum
E(t) may not be of the type that can be transmitted
. . . and the optimum i(t) may be so complicated as
to present insurmountable realization problems.

57
Rummler also notes that although it is known that the impulse response

of the optimum receiver for detecting a point target return immersed in

noise plus clutter may be obtained as the solution of an integral

equation, the most serious objection to its use is that it is difficult

to realize. In addition, since for a given transmit signal the form of

the frequency response of the optimum filter is dependent upon the

probability density function of the clutter (reverberation scattering
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function), each new clutter situation requires the synthesis of a new

receiver with a specially designed frequency response. ",This design

problem becomes especially severe for large time-bandwidth signals

such as chirped pulses." 5 7  However, when the transmit signal and

processing waveforms are pulse trains, the realization difficulties

are minimized. 19'20 ,57  When the transmit signal is a pulse train, the

optimum processing waveform may be approximated by one which is matched

to the shape of the transmit pulse train, but with complex weighted

subpulses. In general, this complex weighted receiver will not perform

quite as well as the true optimum filter, but it is to be preferred

since it may be realized in a straightforward manner. 1,7However,

it should be mentioned here that with the current technology, the

optimum receiver can be calculated adaptively in real time.

Pulse trains have other desirable properties. They possess

20,57,65
simultaneously both high range and Doppler resolution.

Constraints on the energy, bandwidth, and duration can be achieved by

suitably altering the parameters of the pulse train. Thus, if one

chooses, the constraints can be built into the transmit pulse train

while leaving its complex weights to be determined via the optimization

process. In addition, any arbitrary signal of a particular duration

and bandwidth can be approximated by a pulse train. 19And finally,

restricting ii(t) and i(t) to be complex weighted pulse trains allows

the integral expression of the SIR to be transformed into an equivalent

vector-matrix form. Thus, the original problem of finding the optimum

time functions i(t1 and j(t) ,for example, is transformed into a
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parameter optimization problem of finding the optimum transmit-

processing complex weighting vector pair.

The basic approach taken by DeLong and Hofstetter 1 9 ,5 8 will be

followed in this chapter. Their method of transforming the integral

expression of the SIR for a slowly fluctuating point target into an

equivalent vector-matrix expression will be discussed, generalized, and

extended to doubly spread targets in Section 6.2. The fact that each

subpulse of the transmit pulse train is allowed to be arbitrary in shape

makes the approach described in Section 6.2 analogous to the Rayleigh-

Ritz technique. 
66

Although the point target problem is not of primary concern in

this chapter, it is an important and interesting problem in its own

right and is included for completeness. In Section 6.3, two different

optimization problems concerning the maximization of the SIR for a

slowly fluctuating point target are discussed. The first problem is to

find the optimum, unit-energy, complex processing weighting vector that

will maximize the SIR when the complex transmit weighting vector and the

parameters of the subpulses are given. The second problem is to find

the optimum, transmit-processing, complex weighting vector pair that

will maximize the SIR when the parameters of the subpulses are given

and when the maximization is subject to unit-energy constraints on both

3E(t) and i(t) . The iterative technique due to DeLong and Hofstetter 1 9

for solving this joint optimization problem will be discussed.

Section 6.4 addresses the main purpose of this chapter. Three

different optimization problems concerning the maximization of the SIR

for a doubly spread target are discussed. The first problem is to find
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the optimum complex processing weighting vector that will maximize the

SIR when the complex transmit weighting vector and the parameters of

the subpulses are given and when the maximization is subject to a

unit-energy constraint on the processing weighting vector and a

constraint on the desired amount of reverberation to be removed by the

processing weighting vector. The second problem is to find the

optimum, transmit-processing, complex weighting vector pair that will

maximize the SIR when the parameters of the subpulses are given and

when the maximization is subject to a dynamic range constraint on the

transmit weighting vector, a unit-energy constraint on the processing

weighting vector, and a constraint on the desired amount of reverbera-

,lot tion to be removed by the processing weighting vector.

And finally, the third problem is tc, maximize the SIR for a

doubly spread target with respect to the parameters of the subpulses.

For this particular optimization problem, it is assumed that both the

transmit and processing weighting vectors are equal and given and that

the maximization is subject to a constraint on the desired amount of

reverberation to be removed by the processing waveforms and constraints

on the subpulse parameters themselves.

The approach taken in Section 6.4 is to formulate the optimiza-

tion problems into equivalent nonlinear programming problems defined

on a real space. As a result, one need not develop algorithms to solve

these problems, but rather, one can simply use standard computer

programs which are available for solving nonlinear programming problems

(e.g., see Kuester and Mize 67). Note that all three optimization

problems in Section 6.4 are originally defined on a complex space.
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6.2 Mathematical Preliminaries - Problem Formulation
19

Following DeLong and Hofstetter, the first step will be to

normalize the expression for the SIR as given by Equation (6.1-1).

Toward this end, let

ui(t) _(6.2-1)

x

and

i(t) (6.2-2)

g I

where the energy of the transmit signal is given by:

E- = IR(t) 12 d t (6.2-3)
x

and the energy of the processing waveform E- is given by Equation
g

(6.1-3). Equations (6.2-1) and (6.2-2) define the normalized transmit

and processing waveforms, respectively, such that:

f 001 i(t)12 dt = J CO1;(t)1 2 dt =1 .(6.2-4)
-00 -CO

Also, let:

CO

a TRGT RS(t,V)dTd4 (6.2-5)
T ' -TRGT

CO

AREV f fRS(TO9dTd (6.2-6)
00 = RREV

o(T,O) = R (,d) / OTRGT (6.2-7)
TRGT 5TRGT
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and

R(s'(T) R R (TIO) / 'REV (6.2-8)

REV REV

Equations (6.2-5) and (6.2-6) define the total scattering cross-sections

of the target and reverberation, respectively, and Equations (6.2-7)

and (6.2-8) define the normalized target and reverberation scattering

functions, respectively, such that:

ff Ja(T,4)d-rdo = f S (T,O)dTd = 1 (6.2-9)
TRGT 0 REV

Since scattering functions are real, non-negative functions of round-

trip time delay T and Doppler shift € , the normalized functions

o(r,4) and Co(T,O) can be thought of as density functions.
TRGT REV

Substituting Equations (6.2-1) and (6.2-2) into Equation (6.1-2)

yields:

X(T,O) = EE- X(T,b) (6.2-10)
xg uiw

and if Equations (6.2-7), (6.2-8), and (6.2-10) are substituted into

Equation (6.1-1), one obtains:

00

P TRGT 1uNff A _oo , (6.2-11)

PO I f Of (T 'O) X(T,>)I dTdO + 1

REV i
-00
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where p is the normalized SIR for a doubly spread target,

A aTRGTEP = (6.2-12)
o N0

and

X ay RE (62-3
REV  TRGT (6.2-13)

The numerator of Equation (6.2-12) is nothing more than the total

average energy returned by the target [see Equation (3.2-24)].

Therefore, the expression P is the signal-to-noise ratio (SNR), and0

X is the ratio of total reverberation scattering cross-section to

19
1 total target scattering cross-section. Generally speaking, the

optimization problem is to find that pair (or pairs) of unit-energy

waveforms u(t) and w'(t) that will maximize the normalized SIR P

as given by Equation (6.2-11) for constant p and X
0

The normalized complex envelope of the transmit signal ii(t) is

restricted to be a pulse train consisting of uniformly spaced, complex

weighted subpulses; i.e.,

N-1
J~) = a n(t - nT )(6.2-14)
n=O P

where n is an arbitrary complex weight applied to the nth subpulsen

n (-) ; Tp is the interpulse spacing, and N is the total number of

subpulses in the pulse train. The duration of each subpulse I < T

is identical for all subpulses and the total duration of a(t) is

Td NT p Note that each subpulse is allowed to be arbitrary in

k6-p
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shape, except for the time duration constraint T < T . For example,
p

if each subpulse is a linear frequency modulated (LFM) pulse, then:

n (t) L exp(+jb nt 2)exp(+,27rf t)
VTn

n = 0, 1, ..., N - 1; 0 < t < T , (6.2-15)

where (b T)/niT is the swept bandwidth (in Hz) and f is the frequencyn n
th

deviation f:om the carrier (in Hz) of the n subpulse. The quantity

I//T is a normalization factor such that:

.f ;n(t)12  = 1 ; n 0, 1, ..., N - 1 (6.2-16)

The normalized complex envelope of the processing waveform ii(t)

is chosen to be a time (W') and frequency (4') shifted version of

w(t) = i(t - T')exp(+j2Trp't) , (6.2-17)

or substituting Equation (6.2-14) into Equation (6.2-17),

N-1
w(t) = ;d nn(t - (' + nT p)exp(+j270't) , (6.2-18)

n 0

where wj is an arbitrary complex weight applied to the nthn

subpulse.19 When u n for n = 0, 1, ..., N - 1 , this isn n

referred to as the "mismatched filter" case. However, when n = nn n

for n = 0, 1, ..., N - 1 , this is referred to as the "matched filter"

case. The parameters r' and 4' are assumed to be known constants.
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For the case of a doubly spread target, the parameters T' and 0'

can be chosen as the mean round-trip time delay and the mean Doppler

shift [see Equations (2.3-73) and (2.3-79)].

Since one of the optimization problems to be discussed in this

chapter is the joint optimization of p with respect to the unknown

time functions u(t) and w(t) , the form of Equations (6.2-14) and

(6.2-18) are significant. They can be thought of as trial functions,

i.e., linear combinations of a finite number of different, preselected

functions. The preselected functions for a(t) are the N subpulses

n (t - nT ) , and for w(t) , they are n(t - [T' + nT ])exp(+j2Tr't)

When Equations (6.2-14) and (6.2-18) are substituted into Equation

(6.2-11), the joint optimization of p will be with respect to the

unknown complex constant coefficients au and wi for n = 0, 1,n n

N - 1 , and no longer with respect to the time functions a(t)

and i(t) This is exactly analogous to the Rayleigh-Ritz technique

for finding the extremum of a functional which involves quadratic terms

of the unknown time function. With the use of Equations (6.2-14) and

(6.2-18), the integral expression for p can be transformed into an

equivalent vector-matrix expression. But before this procedure is

begun, let us examine the constraints that must be placed upon au andn

4 for n = 0, 1, ..., N - 1 due to the form of Equations (6.2-14)n

and (6.2-18).

If one computes the energy of a(t) and i(t) using Equations

(6.2-14) and (6.2-18), respectively, it can be shown that:
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h to1 d - N -I2

Iiu(t) 12td = I n 12  u = g 2  (6.2-19)
n=0

and
\ 12  N-I

n I w = i , (6.2-20)
n=0n

where

( [ 0  N1 N- 1 T  (6.2-21)

is the (N x 1) complex transmit weighting vector, and

- N4O 0l N 1] T  (6.2-22)

is the (N x 1) complex processing weighting vector. The dagger "t"

denotes complex conjugate transpose and the superscript "T" denotes

transpose. In deriving Equations (6.2-19) and (6.2-20), use was made

of the orthonormal properties of n(t - nT ) , i.e.,

Cm(t - mTp)p*(t - nT )dt = n, (6.2-23)

where it has been assumed that each pn( ) is normalized [see

Equation (6.2-16)]. In order to satisfy the unit-energy requirements

of u(t) and i(t) , the vectors u and w must also be constrained

to have unit-energy, i.e.,

. "= 12 = (6.2-24)
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We are now in a position to transform the integral expression

for p into an equivalent vector-matrix expression. Consider the

magnitude squared cross-ambiguity function

00

1. _* T'X(T, ) f ii (t - 2 )wv(t + -f)exp(+j2T~t)dtj 2

(6.2-25)

Substituting Equations (6.2-14) and (6.2-18) into Equation (6.2-25)

yields:

"2t N-1 N-1 ,
JX(T,> j = I i m n exp(+ji -T '
uw m() n0 m n

2
[m + niT )x [2c(r),4 - , (6.2-26)

where

E ) = [t - t t + (m - n)T ] /2 (6.2-27)

Equation (6.2-26) can also be written as:

w (! Tn) 1f th ((Nm t i2-

where element (mn) of the (N x N) matrix H(T,O) is defined as:
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ii(t, ) exp(+JT[ - '][m + n]TX (2C(T),4-'
mn p p mn

m,n 0 0, 1, ... , N - 1 . (6.2-29)

Using Equation (6.2-28), one can write

00

O(T,O)lX(Tp) 2 dtdp ffi t()_ (6.2-30)
-C J TRGT uw

and
00

f ~,~xrC) drchP H t CR(~ (6.2-31)-- O REV u

where

0o

G (T , ~ )(T, iH (T ,4i1 td4 (6.2-32)
T -- TRGT

is the (N x N) Hermitian "target matrix," and

00

I. t
CR( ) __ j Ja(z,)H(T,) (H(,' )u] dzd4 (6.2-33)

REV

is the (N x N) Hermitian "reverberation matrix." Upon substituting

Equations (6.2-30) and (6.2-31) into Equation (6.2-11), one obtains:

d tC
Po [I + p ACR (6.2-34)

where I is the (N x N) identity matrix. Equatia (6.2-34) is the
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desired vector-tiatriz. -xpression of the normalized SIR P for a

doubly spread target.

The normalized version of the SIR p for a slowly fluctuating

point target is:

~ 2

P , (6.2-35)
P

0 P X f o(T,fl)Ix('t. )I2dTd4 + 1
0 JREV uw

where P0 and X are given by Equations (6.2-12) and (6.2-13),o

'respectively, with

0TRGT = E{ S2} " (6.2-36)

If one evaluates Equation (6.2-26) at T = T' and 4 = , one obtains:

2 N-1 N-1 ~ ,

IX(T',I')I = uWn - nITp,0)
uw m0 n0O mn (6.2-37)

Since

J1 m~n

X([m - n]T ,0) f (6.2-38)
pmPn p 0, m #n

then

2

2 N- i t2

' u = ,; i  (6.2-39)
I uw n-0 nn
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Upon substituting Equations (6.2-31) and (6.2-39) into Equation (6.2-35),

one obtains:

P _ _____________(6.2-40)

o~ -[:-R

which is the desired vector-matrix expression of the normalized SIR P

for a slowly fluctuating point target.

6.3 Maximization of the SIR for a Slowly Fluctuating Point Target

6.3.1 The optimum processing waveform for a given transmit

signal. In this section, we will consider the problem of finding the

optimum unit-energy processing weighting vector HOPT that will

maximize the SIR when the unit-energy transmit weighting vectoru

and the parameters of the subpulses are given.

Since iiand j(-) for n = 0, 1, ... , N - 1 are assumed to
n

be given, the elements of the reverberation matrix C (G) are known

complex constants. Also, since C=~u is positive semi-definite

Hermitian in general, and the identity matrix I is positive definite

Hermitian, the (N x N) matrix [I + p 0XCR(aifl is positive definite

Hermitian since the sum of two Hermitian matrices is also Hermitian 
6 8

and the sum of a positive semi-definite matrix and a positive definite

matrix is a positive definite matrix. 69Therefore, since (I + Po XC R G)]

is positive definite Hermitian, there then exists a unique (N x N)

positive definite Hermitian matrix S such that:

I+ X ~c()- S_ (6.3-1)
0 :-R
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where S is called the square root 70 of (I + PoR(_u)] • Using

Equation (6.3-1), Equation (6.2-40) can be rewritten as:

- = ~ (6.3-2)

o wSSW

which can be bounded from above by applying the Cauchy inequality to

the numerator.

The numerator of Equation (6.3-2) can be rewritten as:

Its S-1 2 = Ij _12 , (6.3-3)

where the (1 x N) complex vector x is:

= wS (6.3-4)

and the (N x 1) complex vector j is:

S- (6.3-5)

The scalar product

N
_xj = i i (6.3-6)

i-i

so that

2 N 2 N (6.3-7)

by application of Cauchy's inequality.9  Since i is a (1 x N)

vector, then:

N
j i2 N 2 (6.3-8)_- 1 = I. I-I 2

i-l
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and since j is a (N x 1) vector, then:

2 N2

2 N 2 (6.3-9)1z2 - [ I
i=l

Substituting Equations (6.3-7) through (6.3-9) into Equation (6.3-3)

yields:

S- 2 < w S S u (S S)- u (6.3-10)

since S S , ( ) = (S) ,and (SS) =(S S) .And upon

substituting Equation (6.3-10) into Equation (6.3-2), one obtains the

desired result:

< u[I + poXC(ii)]- k (6.3-il)

The inequality in Equation (6.3-11) becomes an equality only when

ff k (6.3-12)

or equivalently:

S= k(I + p oCR(i)]-I , (6.3-13)
o -9R (u-

where k is an arbitrary complex constant. Since k is arbitrary, it

can be chosen in such a way that the unit-energy requirement of

Equation (6.2-24) is met. It can be shown that the value of k which

satisfies 1 12 = 1 is given by:

21
k = (6.3-14)

(I + P A(U)
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where k - k is a real constant since the denominator of Equation

(6.3-14) is a quadratic positive definite Hermitian form, and hence,

a real non-zero positive scalar quantity.

Therefore, when a and p ') for n = 0, 1, ..., N - i are
n

given, the optimum processing weighting vector is:

~ = k[I + p X R, (6.3-15)

where k is given by Equation (6.3-14). When -OPT is used, the

normalized SIR p for a slowly fluctuating point target is maximized

and this maximum value is:

[-P f ( + PoXC()] (6.3-16)
PoMAX :R

6.3.2 The optimum transmit-processing waveform pair - an

iterative technique. In order to develop an iterative technique for

finding the optimum pair (-OPT' ,PT) ' one must maximize Equation

(6.3-16) over the set of all unit-energy vectors u . In this section,

an iterative algorithm will be described that yields a sequence of

increasingly better transmit weighting vectors, along with the

corresponding processing weighting vectors.19 ,5 9  This sequence of

transmit-processing, complex weighting vector pairs has the property

that n+l > Pn 19,59

The basis for the iterative procedure is the following symmetry

property of the cross-ambiguity function:

X(T,x)2 ( 2
, (6.3-17)
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where

and
w'() =  (t (6.3-19)

By referring to Equations (6.2-11) and (6.2-35), it can be seen that

the SIR obtained from a transmit signal u(t) and processing waveform

w(t) is the same as would be obtained from a transmit signal Z'(t)

and processing waveform u'(t) . For the case when the transmit and

processing waveforms are pulse trains, this invariance principle is

equivalent to the statement that the SIR, as given by Equations (6.2-34)

or (6.2-40) is invariant under the transformation

w'and w- a'

~where

wh e= ', 
(6 .3-20 )

S= i'i (6.3-21)

and

000" 1

1' •(6.3-22)

01

10 0

Note that the prime symbol " ' " does not indicate transpose. Also note

that premultiplication of a matrix by V' reverses the order of the

rows of that matrix and post-multiplication reverses the order of the

columns. 19
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19The iterative technique due to DeLong and Hofstetter which

finds the optimum pair (U- , - ) that maximizes P for a point
-;-OPT --_OPT

target when p) ; n = 0, 1, ..., N - 1 is given and the maximization

is subject to unit-energy constraints on both aPT and OPT ,is

discussed next.

Start with an arbitrary, unit-energy, transmit weighting vector

u1 and compute its corresponding optimum processing weighting vector

from Equations (6.3-14) and (6.3-15), i.e.,

wPT = kl[I +p0A ) ]i

-P 1- p XCR(u)] a, (6.3-23)

where

ki = 1 -2_1/2 (6.3-24)

1 t[I + Po~P A *ii)I ,

The pair i -OPT I  results in p as given by [see Equation

(6.3-16)1:

P =  Po[I + PCR()] (6.3-25)
-17

By the invariance property described previously, the pair ( PTl

yields the same SIR p1  as given by Equation (6.3-25). However, ii'

is not necessarily the optimum processing weighting vector to use with
the transmit weighting vector . Therefore, the optimum

-OPT I

processing weighting vector corresponding to PTmust yield a SIR

no smaller than p Let

- 2  = • (6.3-26)11 OPT
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which can be rewritten as [see Equation (6.3-21)]:

-2 -- ! pT1  (6.3-27)

Substituting Equations (6.3-23) and (6.3-24) into Equation (6.3-27)

yields:

I'[I + P XC u( -1_i
-- 2 =  

(6.3-28)
{u2[I + po2C( -2- l/2

The optimum processing weighting vector corresponding to - is

[see Equations (6.3-14) and (6.3-15)1:

[I + poX(_)l
-OPT2  "" p -a1/2 (6.3-29)

-!Y,2[ + PoXCR (U2 ) ]-22

and from Equation (6.3-16):

= P o-R(2 l2 - (6.3-30)

Therefore the second iteration would yield the pair (i2' -OPT2 ) as

given by Equations (6.3-28) and (6.3-29), respectively, and this

particular pair would yield the SIR p2 as given by Equation (6.3-30).

Equation (6.3-28) can be generalized so that

+ T(a ) ; n 1 1, 2, 3 .. , (6.3-31)
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where T(') is the nonlinear transformation defined by:

[I + (i_ )] 2 i}1/2 (6.3-32)

_ o - n -n

and iii is an arbitrary, unit-energy transmit weighting vector used

to initiate the iterative algorithm of Equation (6.3-31). The

optimum processing weighting vector corresponding to n+l is:

[I + P oC (U u)-
WOPT 1  R+ C-(an+l )] 2 n+ l/2 (6.3-33)

_44 z+1- o -R -n+1 -un+l}

n = 0, 1, 2,....

The pair U results in a SIR given by:-:l:-OPT n+1

~-. -1.

n+ P-+ - u R-+ (6.3-34)
Pn+l = Po+l [I + PoX-CR(_U%+l ) ] .+il 6.-4

n = 0, 1, 2,

where P > P
n+l -n

The sequence p given by Equation (6.3-34) is monotonic

19
and so must converge. Therefore, in order to find the optimum pair

(UoT ,-OT) 'the iterative algorithm given by Equations (6.3-31)
-OPT' -OPT)
through (6.3-33) should be continued until there is no further change

in P as given by Equation (6.3-34).
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However, this particular algorithm does have its shortcomings.

Although the sequence of P 's will ultimately converge, the limiting

value is a relative maximum at least, but not necessarily the global

maximum.19'5 9  In addition, the procedure does not provide a unique

59optimum solution. The pair of complex weighting vectors (uT
-:OPT'

OPT ) to which the procedure converges is strongly dependent upon

the initial choice of the transmit weighting vector used to start the

59
iteration scheme. And the maximum value of P to which the

algorithm converges is also dependent upon the initial choice of 59

As with any iterative algorithm, the initial choice required to start

the iteration should always be an intelligent choice based upon a

priori information (if available) rather than an arbitrary one.

DeLong and Hofstetter5 8 also point out another drawback of this

iterative technique. Based upon computational experience with their

own algorithm, they found that pulse trains optimized under a unit-

energy constraint tend to have large amplitude variations. Since it

is undesirable to have the amplitude vary widely from subpulse to

subpulse, it is desirable to control the amount of amplitude taper

permitted in the signal design. Therefore, DeLong and Hofstetter
5 8

suggested replacing the energy constraints with a dynamic range

constraint. A dynamic range constraint limits the maximum and minimum

values allowed for the subpulse amplitudes in the transmit weighting

vector. And since a dynamic range constraint also limits signal

energy, energy constraints are no longer necessary. Since their

19iterative technique was not suited for handling a dynamic range
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constraint, DeLong and Hofstetter5 8 formulated their new optimization

problem into an equivalent nonlinear programming problem.

The nonlinear programming problem which they considered was the

maximization of Equation (6.3-16) with respect to u , subject to the

constraints

AMIN ui  < AMAX ; i = 0, 1, ... , N - 1 , (6.3-35)

where both AMIN and AMAX are positive, real constants. In this

problem, the waveforms u(t) and w(t) are identically equal to

x(t) and i(t) , respectively, and hence, are not unit energy. Thus,

the parameter P0 is equal to E{1b12}INo

The approach taken by DeLong and Hofstetter5 8 was to construct

an iteration scheme that, if convergent, would converge to a vector

satisfying the Kuhn-Tucker conditions. The Kuhn-Tucker conditions are

necessary conditions which an optimal solution must satisfy.
58

DeLong and Hofstetter mention that it is not known whether

their algorithm will always converge. Also, even if the sequence of

values of p converges to a relative maximum, they state that it is

theoretically possible that the sequence of transmit weighting vectors

might not converge.

71
Luenberger notes that there are two basic approaches for

handling complex optimization problems by numerical techniques:

(1) formulate the necessary conditions describing the optimal solution

and solve these equations numerically (usually by some iterative

scheme), or (2) bypass the formulation of the necessary conditions

. -...., . .. _ i ...... _ .. . . .
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and implement a direct iterative search for the optimum. Obviously,

DeLong and Hofstetter5 8 took the first approach and ran into some

theoretical difficulties.
71

Luenberger states that the second approach appears to be the

most effective since progress during the iterations can be measured by

monitoring the corresponding values of the objective functional.

Therefore, instead of using the algorithm proposed by DeLong and

58
Hofstetter, one should implement a direct iterative search for the

optimum a that will maximize Equation (6.3-16).

A direct iterative search for the optimum solution is also

recommended to handle the more complicated optimization problems to

be discussed in Section 6.4.

6.4 Maximization of the SIR for a Doubly Spread Target

6.4.1 The optimum processing waveform for a given transmit

signal. As with the point target optimization problem discussed in

Section 6.3, we will first consider the problem of finding OPT for

_ and n() ; n = 0, 1, ..., N - I given. In Sections 6.4.1 and

6.4.2, u(t) and w(t) are no longer considered to be the unit-

energy, normalized versions of x(t) and i(t) , respectively, but

rather u(t) i x(t) and w(t) E i(t) . As a result, the energy of

u(t) and (t) are given by Equations (6.2-19) and (6.2-20),

respectively. Also, the parameter p appearing in Equation (6.2-34)

is now equal to:

o TR T (6.4-1)

0 No

r0
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T he optimization problem to be considered in this section is

the maximization of

0~~ Q0 -T()7

0P = (6.2-34)

with respect to r for a and n (*) ; n = 0, 1, ... , N - 1 given.

The quadratic form in the numerator of Equation (6.2-34) precludes the

direct application of the Cauchy inequality as was done in the point

target case. Therefore, in order to find the optimum i to use with

a given a which satisfies, for example, a dynamic range constraint

AMIN < < AMA X ; i 0, , ... , N - 1 , (6.4-2)

and withPn ( ' ) ; n = 0, 1, ... , N - 1 also given, one must maximizeIn

the quadratic

_ C (a)7 (6.4-3)

or equivalently, minimize the quadratic
6 9

-w4 C (u)w (6.4-4)

with respect to w , subject to the following nonlinear constraints:

N-I

1w2  1 j wiJ 2  (6.4-5)
i=0

and

w C (u)w < K > 0 (6.4-6)

I'
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where K is a real, positive constant since C (5) is positive

semi-definite. Since ai and ()n n -0, 1, .. ,N - 1 are given,

C 0i) and, CG are known, constant matrices [see Equations (6.2-32)

and (6.2-33), respectively]. The choice of a unit-energy constraint,

as given by Equation (6.4-5), was arbitrary since a scaling of the

processing waveform leaves the SIR unchanged. 19The real, positive

constant K in Equation (6.4-6) represents the level to which the

reverberation has been reduced by the processing waveform for ;i and

p (n n =0, 1, ... , N - 1 given. For example, K = 0 means that

the processing waveform, has completely removed all the reverberation. 
1 9

It should be noted that it is not necessary to reduce the reverbera-

566

usually be all that was required.5

Equations (6.4-4) through (6.4-6) represent a problem in

nonlinear programming involving the (N x 1) complex vectors u and

w7and the (N x N) complex matrices C ()and C ().The

minimaization of the quadratic given by Equation (6.4-4) was chosen

since most of the standard computer programs available for handling

nonlinear programming problems are written in terms of minimizing the

nonlinear objective function. The main purpose of this section is to

formulate the above nonlinear programming problem, which is defined

on a complex N-space, into an equivalent nonlinear programming

problem defined on a real 2N-space.

The (N x 1) comrplex vectors ai and '4 can be represented

by (2N x 1) real vectors by treating the real and imaginary parts

4L
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of both a and w as independent variables.5 8  For example, let the

complex weighting vector w be given by:

= + jb (6.4-7)

or

W0a0 b0Wo ao bo

+j (6.4-8)

WN-1 a N-1 bN-1

so that

w i a-jb , (6.4-9)

where a and b are real (N x 1) vectors. From Equation (6.4-7),

one can see immediately that the constraint given by Equation (6.4-5)

in terms of the complex unknowns wi can be rewritten as:

S 2 2 2 + 2 2+ .. + 2j~j 0 + a1 +... +aN-i b0 +bl +.. bNl

0 1N1 0 1 N-1

(6.4-10)

in terms of the real unknowns ai  and b i ; i - 0, i, ... , N - 1 •

Let us now attempt to express the constraint given by Equation (6.4-6)

in terms of the real unknowns a and bi , also.
i f T

First note that the quadratic form w C (ii)i can be expressed

as:6 8

b.



225

N N (6.4-11)
wC (u~~w =l ~ M-1 lm 6.-12=1 rn-i

where r is element (m) of the (N x N) Hermitian matrix

C R(3) Making use of the fact that the reverberation matrix is

Hermitian, i.e., ri. = r.i , the expansion of Equation (6.4-11)

becomes:

wCR) - rl 12+ r221Wl 2 + 1.. + r IWN12 +

r R 1 1  0 22 1 NN N-i

2Re +rrw*w1 + Wr + rl WN i +

* * _ *r 3w w2 + r 4w w3 + + +2~~- **

r(N-2)(N-i) N-3 N-2 + r(N-2)NWN-3 N-I +

r (N-I)N WN-2 N-I (6.4-12)

where rll, r22, ... , rNN are real constants. Also, note that the

expression

r (Zl)(m+2)w£2Wm+l ; Z - 2, 3, N

m = 0, 1, ... , N - 2 (6.4-13)

will match any cross term appearing in Equation (6.4-12) so long as

the difference between t and m is not greater than positive 2,

i.e.,

- < 9 - m < +2 (6.4-14)

Now let

r2m = Zm + JYZm (6.4-15)
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where xm and Ytm are real, known constants since _C(a) is a

known, constant matrix. Recalling that

Wi M ai + Jbi (6.4-16)

and upon substituting Equations (6.4-15) and (6.4-16) into Equation

(6.4-13) and then taking the real part, Equation (6.4-12) can be

expressed as:

N
~± T C x (a2_

wCR 1 E kk'k-+bkl) +
k=l

N N-2
2 L I [a - 2 am+l + b Z-2bxm+]X(Z-)(m+2) +
Z=2 mffiO

- < 9-m<+2

(a m+ b- 2 - aZ- 2 bM+l]Y( -l)(m+2)} < K > 0

(6.4-17)

since rll, r2 2, ... , rNN are real constants, and hence, from

Equation (6.4-15), 11 = X , r22 = x 22 ... , rNN = XNN

Equation (6.4-17) expresses the original nonlinear constraint as

given by Euation (6.4-6) in terms of the real unknowns ai and bi

Similarly, if one denotes element (Zm) of the (N x N)

Hermitian matrix CT(u) as:

tmi Zm + J, m (6.4-18)

where both aLm and $ are real, known constants, then the

nonlinear objective.function given by Equation (6.4-4) can be

expressed as:
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N 2 2
-HC(u)w I a kakl +b -

k-i k k-i13

N N-2{r
N N - E a [a 2am +i1  I b Z 2 bm +l1 1
Z=2 mm

-- <-m<+2

a(Z-l)(m+2) + [am+l b£-2 -aZ-2bM+1"

(i-i) (m+2) } (6.4-19)

The task of formulating the original nonlinear programming

problem which was defined on a complex N-space into an equivalent

problem defined on a real 2N-space has been accomplished. For a

given complex transmit weighting vector which satisfies Equation

(6.4-2), and with the parameters of the subpulses also given, the

equivalent problem is to minimize the nonlinear objective function

given by Equation (6.4-19) with respect to the real unknowns ai and

b. ; i = 0, 1, ..., N - 1 subject to the nonlinear constraints

given by Equations (6.4-10) and (6.4-17). Once the optimum pair

(a, b ) is found, the corresponding optimum complex processing
=OPT 'OPT

weighting vector can be computed from

-OPT -OPT + OT (6.4-20)

One of the most common nonlinear programming techniques for

handling constraints is to use the method of steepest descent in

conjunction with the gradient projection method.6 6 ,71 The gradient

projection method is due to Rosen.'
63 6 4

- .
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6.4.2 The optimum transmit-processing waveform pair. Using

the results of Section 6.4.1, a joint optimization nonlinear program-

ming problem will be formulated in this section, the solution of which

will yield the optimum pair (aPT' OPT )  that maximizes the SIR p

for a doubly spread target subject to a dynamic range constraint on the

transmit weighting vector and the amount of reverberation to be

removed. Once again it is assumed that the parameters of the subpulses

are given.

Consider the following (N x N) positive semi-definite

Hermitian matrix
OD

C(a) (dTd (6.4-21)

where the subscripts "T" and "R" have been removed for now. If one

expresses the (N x N) matrix H(T,O) as:

h 00 01 O(N-l)

h10 h11 hl(N-1)

H(t ,4) = * . . . .

h (N-1)0 (N-1)1 h (N-)(N-1)

(6.4-22)

where h(T,O) , then it can be shown that element (ij) of the
mn mn

(N x N) matrix HCT, )ii[H(T, ) 1t is:
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[ a x 9 J u 1.(6.4-23)
Z=O Mmffi

i,j 0, 1, N 1

and as a result, element (ij) of C(a) is given by:

00

N-i N-1

[C( ij u u( (itl),Pk ( ) mddI
9=0 m=O -.O

i,j = 1, 2, ... , N , (6.4-24)

where h(T) is defined by Equation (6.2-29) and
mn

00

X[2e(),'P - [t - £ )n[t + C(T)]

exp(+j2n[o - d'lt)dt , (6.4-25)

where e(T) is defined by Equation (6.2-27). Since
mn

tij f  [T(-) ij (6.4-26)

and

iij= C-(-) ]ij (6.4-27)

Equation (6.4-24) can be used to write

N-I N-I
tij u 0 ui umTij ; (6.4-28)

£=, O ,-0,

i,j 1 1, 2, ... , N

______________________-__ 1
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and

N-I N-I

.j I0 I a m ;ij,.m ij =1, 2, . N2£-0 M-0 ,,£m"

(6.4-29)

where 00

r-
i,j 9,m =  a(T,O)H .....k h ....T dTdo (6.4-30)i'j,£,m = TRGT (j-1)1hJi

and

00

iji-... ... dTd$ (6.4-31)fj REV 0zi)¢i-1)m

The expressions TijXm and Rj,,m are known, complex

constants since the subpulses pn() ; n = 0, 1, ..., N - 1 are

given.

Next, represent the complex elements of the transmit weighting

vector as:

Ui =  
1 1+ Jni ; i = 1, ... , N - 1 , (6.4-32)

where both P . and ni  are real, unknown constants. Upon

substituting Equation (6.4-32) into Equations (6.4-28) and (6.4-29),

one obtains:

N-i N-i

:ij X { (1JII + Yflm)Re(tij,.) -
£0 m=0(

(IImf£ - I£nm)Im( Ti,j,2,m) +

j(t Pz~m + n 9flM)Im(Ti,Z,m) +
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(i, 1- U~m)Re (T i'j ,Zm)]} (6.4-33)

i,j f 1, 2, ... , N

and

N-I N-I

r = ( k {( m + rlZml)Re(Ri jZm)
1=0 mffi

(Pmnz - IYnm)Im(Ri j ,,m) +

j[(PZ m + nkfm)Im(Ri,j,1,m) +

(P T k- Ik Tm)Re(i,j,z,m)]}; (6.4-34)

i,j = 1, 2, ... , NI-
Equations (6.4-33) and (6.4-34) express the complex unknown elements

of the target and reverberation matrices, respectively, in terms of

the real unknowns pi and i * Note that the j term multiplying

the square brackets in both Equations (6.4-33) and (6.4-34) is equal

to / , and hence, is not an index. All the information required

to formulate the joint optimization nonlinear programming problem in

terms of real unknowns is now available.

The nonlinear programming problem can be stated as follows:

minimize the nonlinear objective function given by Equation (6.4-19)

with respect to the real unknowns p i , ai ,and bi ;

i 0, 1, ..., N - 1 , where ij = Re( ij) and =ij Im( ij) can

be obtained from Equation (6.4-33). The minimization is subject to
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the following nonlinear constraints: (1) Equation (6.4-17), where

= Re(ri ) and Yij - Im(ri i) can be obtained from Equation

(6.4-34); (2) the dynamic range constraint

AMIN < u AMAX ; i - 0, 1, ... , N - 1 (6.4-2)

or equivalently,

(P 2 + 2 )1/2 < AA i = 0, 1, .... N - IAMIN i

(6.4-35)

and (3) the unit-energy constraint

2 2 2 + 2+ 2+ . + 2 1: a0 + a + ... +a_ +b 0 +b +. b bN_ 1
0 1 N-1 0 1 N-i

(6.4-10)

Once the optimum vectors aOPT b " OPT" and -%PT are found,

the corresponding optimum transmit and processing complex weighting

vectors can be computed from:

-OPT !!OPT + 3DOPT (6.4-36)

and

ThaPT = OPT + JbOPT (6.4-37)

The optimization problem to be considered in Section 6.4.3 is

totally different from those discussed in Sections 6.4.1 and 6.4.2.

In Section 6.4.3, the transmit and processing weighting vectors are

assumed to be equal and given. The maximization of the SIR will be

with respect to the parameters of the subpulses.
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6.4.3 Maximization of the SIR for a doubly spread target with

respect to the subpulse parameters. Consider the "matched filter"

version of Equation (6.2-34). That is, if one lets = Li

Equation (6.2-34) becomes:

_- (6.4-38)

Po u [I + P XC(U)]Li

where it is assumed that a is given. In this section, the waveform

L(t) is once again the normalized version of i(t) . Hence,
Ig2

JiiJ = 1 and p is given by Equation (6.2-12). The optimization

problem is to maximize Equation (6.4-38). More specifically,

minimize the nonlinear objective function

- (i)i (6.4-39)

with respect to the subpulse parameters, subject to the nonlinear

constraint

u C R(a)u < K > 0 (6.4-40)

and suitable constraints on the subpulse parameters. Note that

although L is given, the target and reverberation matrices are

unknown, constant matrices. They are both functions of the snbpulse

parameters for this optimization problem. The complex scalars Rlmn

m,n 0 0, 1, ..., N - I are not only functions of T and l but

they are also functions of the parameters of the subpulses pm()

and pn -) via the cross-ambiguity function x(,')

m n
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Let the n th subpulse pn(t) be given by the general expression

n(t) = - exp[+jYn(t)] ; 0 < t < T < T , (6.4-41)

where 'Tn (t) is the instantaneous phase function. Note that Pn(t)n

satisfies the orthonormality condition given by Equation (6.2-23).

Upon substituting Equation (6.4-41) into Equation (6.4-25), and then

substituting this result back into Equation (6.2-29), one obtains:

c Re{n} = cos{(t - E(T)] - T [t + E(T)] +
m T j mn n m

7T(4 - ')[2t + (m + n)T ]}dtP

(6.4-42)

~~~~~~~andd =Imh} iC|sn{ [

ann Im{E 1 sin{ [It - E(T)] - Tn[t + E(T)] +
n nn T f m mn n un

- 4')[2t + (m + n)T p]}dt
p

(6.4-43)

where

= c + jdm ; m,n 0,1 ... , N - 1. (6.4-44)

Using Equation (6.4-44), the expression R(1)Zh(j-l)m appearing in

both Equations (6.4-30) and! (6.4-31) can be rewritten as:

Ii *~ - c c + +d d +h(i-l)z (j-l)m = (i-l)z,(j-l)m + (i-l)Zd(J-l) m

J~ccj-l)m d(_i-) - c(il)Zd(jl)m]

(6.4-45)
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Note that the j term multiplying the square brackets in Equation

(6.4-45) is equal to V'1 , and hence, is not an index. Keep in mind

that since hi is a function of T , , and the subpulse parameters,

then both c and d are also functions of these same variables.mn mnl

For example, if T (t) is of the form
n

T'(t) = b t 2 + 2Tf t ; n 0, 1, ... , N - 1, (6.4-46)n n n

then, from Equations (6.4-42) and (6.4-43), one can see that:

c = c (T,,bm,fm,bn,fn) (6.4-47)

and

dmn fmn (,,bmfm~bnfn) (6.4-48)

Since it was assumed that w = u , where i is given, then

from Equation (6.4-16), one can write

Wi = u. = a. + jbi  ; i = 0, 1, ... , N - 1

(6.4-49)

where the a.'s and b.'s are real, known constants. Also, since
1 ~ 1

=t tR ad
.... ... =and i= C ( )4 , then Equations

(6.4-39) and (6.4-40) can be replaced by Equations (6.4-19) and

(6.4-17), respectively.

Assume for simplicity that the transmit weighting vector is

real, i.e., only uniform amplitude weighting is done. Therefore,

under these assumptions and since Iji2 1
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1a. 1f - ; 0, i,., N 1

and (6.4-50)

b. = 0 ; i 0, 1, ... , N- 1

Upon substituting Equation (6.4-50) into Equations (6.4-19) and

(6.4-17), Equations (6.4-39) and (6.4-40) can be expressed as:

i N N N-2
- C (_)_E -N I I ak =k2 m=O (-)(m2

_--< m<+2 (6.4-51)

and

'lttN N N-2
u CR(ii)u 1 Xkk + 2 X(KI)(m> 2 ) 0

k=l £2 m=0 -

-o< k-m<+2 (6.4-52)

respectively, where

ai = Re{t ij} (6.4-53)iij

or

1 N-i N-i

-j N Z jZ G(r[')(c c+
iO 0 m=0 TRGT (i-1)t.(j-1)m

d U1)£d (jl)]drd4 ; i,j - 1, 2, ... , N

(6.4-54)

and

x ij Re{ ij } (6.4-55)
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or

1N-i N-i 0
N m- f(-,qc (i.l)zC(j.l)m +

d(il)£d(jl)m~dTd ; i,j = 1, 2, N

(6.4-56)

As a result of the above analysis, our problem in nonlinear

programming can be stated as follows: minimize the nonlinear objective

function given by Equation (6.4-51) with respect to the parameters of

the N subpulses, where ij is given by Equation (6.4-54) and

and d.. are given by Equations (6.4-42) and (6.4-43), respectively.
1th

For example, if the instantaneous phase function of the nth subpulse

is given by Equation (6.4-46), one may choose to minimize with respect

to either the frequency deviation parameters

f ; n = 0, 1, ..., N -1n

or the frequency sweep parameters

b ; n = 0, 1 ... , N -n

or both. The minimization is to be performed subject to both the

nonlinear constraint given by Equation (6.4-52), where xij is given

by Equation (6.4-56), and suitably defined constraints on the subpulse

parameters. For example,

-fMAX < fn < fMAX ; n = 0, 1, ..., N - 1

and (6.4-57)

-b < b n bMAX ; n = 0, 1, . .,MAX -_ bn _ A



238

Of the three optimization problems discussed concerning the

doubly spread target, maximization with respect to the subpulse

parameters is the most significant one. By closely inspecting

Equations (6.4-51) through (6.4-57) and Equations (6.4-42) and (6.4-43),

one can easily see that this rather general formulation is a very

complex numerical problem. Let us investigate next the extent to which

this important problem can be simplified, specifically the expressions

for a ij and xij as given by Equations (6.4-54) and (6.4-56),

respectively.

If the relatively simple target scattering function derived in

Chapter IV [see Equations (4.3-8) through (4.3-12)] is normalized

according to Equation (6.2-7) and then substituted into Equation

(6.4-54), one obtains:

N-1F12 [HDET /fc])/(CTn)]"

NGTRGT 2=0 m=0 n=l n

exp { 4a(fc)[(ctn)/[2 - [ DETn/fc]J ] }

E{ IFn(fc)1 2} (sinen) •

f C[T n'-DET ... ]C[T n,- 4 DET +

(i-l)£ n (j-l)m n

" dil n'%E 1'"J
d[T,- DET n' DET

(i-l)Z n (j-l)m n J

i,j = 1, 2, .... N , (6.4-58)
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where

CYNH 1C ]2
TRGT = , [[2 - [. f] / (cTn) n

exp { 4ci(fc)[(cTn) / {2 - [1DET n/f c1J]

ET Fn(fc)12 }sinn (6.4-59)

and NH is the number of discrete point highlights along the target.

The double integral originally appearing in Equation (6.4-54) has now

been replaced by a single summation due to the presence of the target

scattering function's Dirac delta functions in T and . Note that

cij and dij are functions of T and -0DETn

of the instantaneous phase function [see Equations (6.4-42) and

(6.4-43), respectively]. Although Equation (6.4-58) is a simplified

version of Equation (6.4-54), it is still not trivial. In order to

evaluate ai.. for just one pair of values for (i,j) , a double

summation over all N subpulses must be performed followed by a

summation over all NH highlights of the target. In addition, each

c (i-1)9, , c(jl)m ,d(i_,)k , and d(J-l)m is an integral with

respect to time t

The expression for xij as given by Equation (6.4-56) can also

be simplified somewhat by judiciously specifying the normalized

reverberation scattering function a(T,4) . A common simplification
REV

is to assume that the scattering function RS(TO) is a function of
REV
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4 only, i.e., R S(T,) - R() . Van Trees1 2 refers to R () as
REV REV REV

the Doppler scattering function. However, even wlth this simplifica-

tfn, the integration with respect to T remains in Equation (6.4-56)

since c (il)z C(j-l)m , d(il)k , and d(j-l)m are functions of

T . Thus, x. . remains a very complicated expression. In order to

evaluate xi. for just one pair of values for (i,j) , a double

summation of a double integration with respect to T and 4 , in

addition to integrations with respect to time t , must be performed

over all N subpulses.

Therefore, in conclusion, even with the above simplifications,

the important problem of maximization with respect to subpulse

parameters remains a difficult nonlinear programming problem.

IJ



CHAPTER VII

SUMNMARY AND CONCLUSIONS

This dissertation was concerned with the problem of detecting a

doubly spread target returL in the presence of reverberation and noise

via maximization of the signal-to-interference ratio (SIR) by signal

design. Previous research efforts have been devoted mainly to either

the slowly fluctuating point target or singly spread target problems.

The basic philosophy that was adopted in this dissertation was to treat

both the ocean medium and the target as linear, time-varying, random

filters. Accordingly, this dissertation began with a discussion on the

fundamentals of linear, time-varying, deterministic and random filters

in Chapter II. This chapter presented some of the basic mathematical

relationships, terminology, and concepts that are part of linear,

time-varying filter theory.

The four system functions which are used to characterize linear,

time-varying filters were discussed. These functions are (1) the time-

varying impulse response, (2) the time-varying frequency response or

transfer function, (3) the spreading function, and (4) the bi-frequency

function. It was shown that these four system functions and their

corresponding autocorrelation functions are related to one another via

Fourier transformations. In addition to various input-output relation-

ships, expressions for the output power spectrum for both deterministic

and random systems were derived. These expressions demonstrated the

frequency spreading property of linear, time-varying filters. The
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discussion on the important channel property of uncorrelated spreading

introduced the concepts of the wide-sense stationary uncorrelated

spreading (WSSUS) channel and the scattering function along with its

various Fourier transforms.

Chapter II concluded with a brief discussion of two different

ways of characterizing a time-varying channel via its scattering

function. The first method involved interpreting the scattering

function as a joint density function since it is real, non-negative,

and can be normalized to integrate to unity. Thus, first and second

order moments of the round-trip time delay (range) and frequency spread

'can be computed. The second method was concerned with the finite

extent of the scattering function in the range-frequency plane. As a

result of this approach, the concepts of an underspread and an over-

spread channel were defined. Criteria for avoiding spreading in range

and/or frequency were formulated in terms of the duration and bandwidth

of the transmit signal and the extent of the scattering function in the

range-frequency plane. It was concluded that both range and frequency

spreading could be avoided only for underspread channels. For over-

spread channels, one can choose a transmit signal such that either range

or frequency spreading is avoided, but not both.

Chapter III introduced the problem of detecting a doubly spread

target return in the presence of reverberation and noise. This chapter

began with a brief discussion of the complex envelope notation for

bandpass signals since the binary hypothesis testing problem was

formulated in terms of the complex envelopes of the target, reverbera-

tion, and noise signals. Two different relationships between the

input and output complex envelopes of a linear, time-varying filter
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were derived. The first relationship was shown to be approximate and

was based upon a narrowband assumption. However, the second relation-

ship was shown to be exact and is valid for broadband as well as

narrowband bandpass signals. Both the target and reverberation returns

were modelled as the outputs from linear, time-varying, random filters

which were assumed to be WSSUS communication channels.

The particular receiver structure used was a correlator followed

by a magnitude squared operation. The magnitude squared output from the

correlator was tested against a threshold determined from a probability

of false alarm constraint in a Neyman-Pearson test.

Having specified both the binary hypothesis testing problem and

the receiver, the signal-to-interference ratio (SIR) for a doubly spread

target was derived. It was shown to be dependent upon the target and

reverberation scattering functions and the cross-ambiguity function of

the transmit signal and processing waveform. It was also demonstrated

that the more familiar SIR expression for a slowly fluctuating point

target could be obtained from the general SIR expression for a doubly

spread target.

The final discussion in Chapter III was devoted to the question

of receiver optimality. Although the chosen receiver structure can be

an optimum receiver for detecting a slowly fluctuating point target,

it is sub-optimum for detecting a doubly spread target. However, it

was concluded that the use of a sub-optimum receiver is not necessarily

a hindrance since the SIR can still be maximized by proper design of

both the transmit and processing waveforms. And in the important case

of Gaussian statistics, maximizing the SIR is equivalent to maximizing

the probability of detection for a given probability of false alarm
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(i.e., the Neyman-Pearson criterion). In order to maximize the SIR

for a doubly spread target via signal design, one must be able to

specify both the target and reverberation scattering functions. In

general, the reverberation return is a composite of volume, surface, and

bottom reverberation returns. However, only volume and surface

reverberation were considered.

Both a volume reverberation and a target scattering function

were derived in Chapter IV. In the past, assumed functional forms for

the reverberation (clutter) scattering function were used in order to

calculate the SIR.

Volume reverberation was modelled as the scattered acoustic

pressure field from randomly distributed discrete point scatterers in

deterministic plus random translational motion. The point scatterers

were distributed in space according to an arbitrary volume density

function with dimensions of number of scatterers per unit volume.

The two-frequency correlation function representing the volume

reverberation communication channel was derived for a bistatic transmit/

receive planar array geometry. A single scattering approximation was

used and frequency dependent attenuation of sound pressure amplitude

due to absorption was included. The scattered fields from different

regions within the scattering volume were assumed to be uncorrelated.

It was noted that the coherence time and coherence bandwidth can be

computed from the two-frequency correlation function. The reciprocals

of the coherence time and the coherence bandwidth are equal to the

spectrum broadening and time broadening, respectively, that a wave will

undergo as it propagates through a random, time-varying medium. The
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volume reverberation scattering function was obtained from the two-

frequency correlation function via a two-dimensional Fourier

transformation and was shown to include explicitly all the important

system functions and physical parameters as opposed to having them

lumped together and accounted for by a single random variable as has

been done in the past. A probability density function of random

Doppler shift due to the random motion of the scatterers was also

derived. In addition, the average received energy from volume reverber-

ation was computed from the volume reverberation scattering function.

Using several simplifying assumptions, it was shown to reduce to the

sonar equation for reverberation level.

The doubly spread target was modelled as a linear array of

discrete highlights in deterministic translational motion. The target

scattering function was obtained from the monostatic form of the volume

reverberation scattering function by appropriately specifying the volume

density function of the highlights.

Computer simulation results for both the volume reverberation

and target scattering functions were presented as examples involving a

monostatic transmit/receive array geometry. The volume reverberation

scattering function predicted frequency spreading as a function of both

beam tilt angle and randomh motion of the discrete point scatterers. As

one might expect, frequency spread increased as both beam tilt angle

and random motion increased. Also predicted was time spread and/or

contraction as a function of Doppler shift. Similarly, the target

scattering function predicted a spread in Doppler values and a time

spread and/or contraction as a function of Doppler shift. Computer
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plots of the probability density function of the random Doppler shift

were also presented for a monostatic geometry as a function of the

standard deviation of the random motion of the scatterers.

A surface reverberation scattering function was derived in

Chapter V. The underwater acoustic propagation path between transmit

and receive planar arrays via the surface of the ocean was treated as

a linear, time-varying, random WSSUS communication channel. The

random, time-varying, surface reverberation transfer function was

derived for a general bistatic geometry using a generalized Kirchhoff

approach. The generalized Kirchhoff approach included a Fresnel

corrected Kirchhoff integral and the Rayleigh hypothesis that the

scattered acoustic pressure field can be represented as a sum of plane

waves travelling in many different directions. Also, no small slope

approximation was made.

The following important observations were made in deriving the

surface reverberation transfer function: (1) Generally speaking, the

validity of the transfer function is restricted to that region of the

ocean surface which corresponds to the intersection of the transmit and

receive projected beamwidths, especially if the beam patterns have

significant sidelobes. (2) The binomial expansion becomes a less reli-

able approximation as the grazing angle approaches zero degrees and/or

the beamwidths of the directivity functions increase. For some combin-

ations of grazing angle and beamwidth, the binomial expansion is invalid.

(3) Assuming that the functional form of the projected transmit and

receive beam patterns is Gaussian leads to a major source of error when

comparing theoretical predictions with experimental results. As a
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result, the transmit and receive directivity functions included in the

derivation of the transfer function in Chapter V were kept as general,

frequency dependent expressions. The necessary transformation equations

which will project both directivity functions exactly were provided.

(4) And when the transfer function derived in Chapter V was compared

with previously published expressions for the scattered acoustic

pressure obtained from a classical Kirchhoff approach, it was shown to

contain additional "correction" terms which increase its magnitude,

especially for the backscatter and specular geometries. This is

encouraging since results based upon a classical Kirchhoff approach

have predicted values for the scattering coefficient that were smaller

than experimental values.

Two second order functions were derived from the surface

reverberation transfer function by assuming that the randomly rough,

time-varying ocean surface was a zero mean, wide-sense stationary,

Gaussian random process. These included the two-frequency correlation

function and the surface reverberation scattering function. The second

order functions were shown to be dependent upon the directional wave

number spectrum of the ocean surface. The surface reverberation

scattering function predicted both a spread in round-trip time delay

and in frequency. Previously published expressions for the ocean

surface reverberation scattering function were based upon a Fresnel

corrected Kirchhoff integral and a small slope approximation. They

pertained only to a specular geometry. In addition, these expressions

did not include a receive directivity function and a Gaussian functional

form for the projected transmit beam pattern was assumed. And further-

more, very specific models for the ocean surface were used rather than
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the general form of the directional wave number spectrum. These

specific models are nothing more than special cases of the general

form of the directional wave number spectrum.

Having derived the various scattering functions, the last major

topic then was the optimization problem of maximizing the SIR for a

doubly spread target via signal design. This problem was considered

in Chapter VI. Both the transmit and processing waveforms; were

restricted to be pulse trains. Each subpulse of the transmit pulse

train was allowed to be arbitrary in shape and could occupy the entire

interpulse spacing interval if desired. This represents a generaliza-

tion of earlier approaches. The optimum processing waveform, was

approximated by a time and frequency shifted replica of the transmit

pulse train. Each subpulse of both the transmit and processing pulse

trains were allowed to be complex weighted. Restricting the transmit

and processing waveforms; to be complex weighted pulse trains allowed

the integral expression of the SIR to be transformed into an equivalent

vector-matrix form. And the fact that each subpulse of the transmit

pulse train was arbitrary in shape made this approach analogous to the

Rayleigh-Ritz technique. Thus, the original problem of finding the

optimum time functions was transformed into a parameter optimization

problem.

Although the slowly fluctuating point tL,; "It problem was not of

primary concern in Chapter VI, it is an important and interesting

problem in its own right and was included for completeness since

substantial research effort has been devoted to it in the past. Two

different optimization problems concerning the maximization of the SIR
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for a slowly fluctuating point target were discussed. The first problem

was to find the optimum, unit-energy, complex processing weighting

vector that would maximize the SIR when the complex transmit weighting

vector and the parameters of the subpulses were given. The second

problem was to find the optimum, transmit-processing, complex weighting

vector pair that would maximize the SIR when the parameters of the

subpulses were given. The maximization was subject to unit-energy

constraints on both the transmit and processing waveforms.

Three different optimization problems concerning the maximization

of the SIR for a doubly spread target were discussed. The first

problem was to find the optimum complex processing weighting vector

that would maximize the SIR when the complex transmit weighting vector

and the parameters of the subpulses were given. The maximization was

subject to a unit-energy constraint on the processing weighting vector

and a constraint on the desired amount of reverberation to be removed

by the processing weighting vector. The second problem was to find

the optimum, transmit-processing, complex weighting vector pair that

would maximize the SIR when the parameters of the subpulses were given.

The maximization was subject to a dynamic range constraint on the

transmit weighting vector, a unit-energy constraint on the processing

weighting vector, and a constraint on the desired amount of reverbera-

tion to be removed by the processing weighting vector.

And finally, the third problem was to maximize the SIR for a

doubly spread target with respect to the parameters of the subpulses.

For this particular optimization problem, it was assumed that both the

transmit and processing weighting vectors were equal and given, and
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that the maximization was subject to a constraint on the desired amount

of reverberation to be removed by the processing waveform. and constraints

on the subpulse parameters themselves.

Since all three optimization problems f or the doubly spread

target were originally defined on a complex space, the approach taken in

Chapter VI was to formulate the optimization problems into equivalent

nonlinear programming problems defined on a real space. As a result,

one need not develop algorithms to solve these problems, but rather, one

can simply use'standard computer programs or methods which are available

for solving nonlinear programming problems. 
67 V7 2'7 3

Not Of the three optimization problems discussed concerning the

maximization of the SIR for a doubly spread target, maximization with

respect to the subpulse parameters is the most interesting and

significant one. However, even with several simplifying assumptions,

it was shown to be a difficult nonlinear programming problem.

Therefore, in conclusion, all the information required to solve

the problem of detecting a doubly spread target return in the presence

of reverberation and noise by maximizing the SIR via signal design has

been furnished; namely, the receiver structure; target, volume reverber-

ation, and surface reverberation scattering functions; and the formu-

lation of the various SIR optimization problems into equivalent

nonlinear programming problems defined on a real space.



CHAPTER VIII

RECOMMENDATIONS FOR FUTURE RESEARCH

Although the volume reverberation model that was used in this

dissertation was based upon classical assumptions, the derivation of

the volume reverberation scattering function was nonetheless tedious,

instructive, and did demonstrate some basic phenomena. For example,

the volume reverberation scattering function predicted frequency

spreading as a function of both beam tilt angle and random motion of

the discrete point scatterers. Also predicted was time spread and/or

contraction as a function of Doppler shift. However, it is recommended

that more realistic models of the ocean medium be studied. For example,

aninvestigation as to whether or not a volume reverberation scattering

function could be derived for an ocean medium with a variable sound

speed profile would be interesting. In addition, one could include

scattering from internal waves along with incorporating more sophisti-

cated target models.

Since the two-frequency correlation function is one of the

fundamental expressions required in order to study wave propagation in a

random medium, it is recommended that experimental values for both the

target and volume reverberation two-frequency correlation functions be

collected. The experimental values and theoretical predictions for

frequency and time spreading could then be compared. On the basis of

these comparisons, the validity of various mathematical models could be

established; for example, the discrete point scatterer model used for
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volume reverberation and the extended target and the WSSUS assumption

required for scattering function calculations.

It was demonstrated in this dissertation that an ocean surface

reverberation scattering function could be derived by using a general-

ized Kirchhoff approach. Since the validity of the Kirchhoff approach

is dependent upon a radius of curvature restriction (which is based

upon a sinusoidal ocean surface model), it is recommended to investigate

a surface reverberation scattering function derivation based upon alter-

nate approaches; for example, stochastic operator techniques 7-6or

applicable perturbation methods. 48While a perturbation method is not

dependent upon a radius of curvature restriction, it is dependent upon a

restriction on the slope of the surface. 48A composite surface roughness

model--high spatial frequency waves (capillary waves) superimposed upon

low spatial frequency sinusoidal waves (gravity waves)--should also be

investigated.

Since the treatment of surface reverberation was entirely

analytical in this dissertation, much computer simulation work with the

equations could be done. For example, it is recommended that computa-

tion of the surface reverberation scattering function be performed for

both specular and backscatter geometries and compared with the results

from previously published expressions. The scattering function

calculations should incorporate the directional wave number spectrum.

For example, one could use the Neumann-Pierson spectrum, the Pierson-

Moskowitz spectrum, and other special cases. Shallow grazing angles

could especially be investigated in the backscatter case.

Besides computer simulation work, an experimental program should

be conducted to determine the quality of agreement between experimental
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values and theoretical predictions of the surface reverberation

two-frequency correlation function. Both experimental and theoretical

values for frequency and time spreading could be computed and compared.

Of the three optimization problems discussed concerning the

maximization of the SIR for a doubly spread target, maximization with

respect to the subpulse parameters is the most interesting and

significant one. For example, this particular problem formulation

77-79
allows one to find optimum frequency hop codes. Although

maximization with respect to the subpulse parameters is a difficult

nonlinear programming problem, it is recommended that future research

efforts be devoted to investigating valid simplifications and efficient

'methods for its solution so that meaningful example problems can be

solved.

I
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APPENDIX A

DERIVATION OF THE RETURN SIGNAL

FROM A SLOWLY FLUCTUATING POINT TARGET

If one considers a slowly fluctuating point target to be in

relative motion and in the far-field with respect to a bistatic transmit/

receive array geometry, then it can be shown that the transfer function

which corresponds to this physical situation is given by [see Equation

(4.2-14) and Figure 71:

H(f,t) = RF exp{-Jk[R + R + (4i - R) " Vt']}
T R 0T T R

(Al)

where

F(f) D D(kUT,kVr)g(nR,nT,f)DR(kUp,kv R )  (A2)

uT = sineTco' T  (A3)

vT = sini T , (A4)

uR = sine Rcos R , (AS)

vR sinesR , (A6)

R
t OR

c (A)
V a n R
i

and k - -f is the wave number, where c is the speed of sound in thec

ocean medium. The expressions DT and DR are the far-field directivity

~i
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patterns of the transmit and receive arrays, respectively. The

function g(nR nTf) is the scattering amplitude function. It

represents the random, far-field amplitude of the scattered wave in

the direction n when the point target is insonified by a unit

amplitude plane wave propagating in the direction nT " Both ' and

nR are unit vectors. The spherical angles (6T' T) and (aR R) are

measured with respect to the transmit and receive arrays, respectively.

The velocity of the target V is assumed to be constant, and R and

R are the initial ranges of the target from the transmit and receive

arrays, in the directions iT and (-nR) , respectively. The retarded

time t' is given by Equation (A7).

Upon substituting Equations (Al) and (A7) into Equation (3.2-15),

one obtains:

FR R ) x [j 1T 1s t
R s[t - "ISst

y R I~ 2 ]fcS I.TJ~s)

exp [j 2Trfcs[ (A8)

which is the complex envelope of the return signal from a slowly

fluctuating point target where it was assumed that IfcI >> fi so

that F(f + f ) F(f ) • The time compression/stretch factor s is
c c

defined as:

Sn T "V

A c (A9)

1 R

-- - "i a~n - " '-:-" w . . ..
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the expression T(s)/s is defined as the round-trip time delay in

seconds where

R~O R
T(s) = T - (1 - s (A0)0 C

and R +R

T A °T O

0 0 T (All)

and the Doppler shift factor (1 - s) is defined as:

S(r- iR)"V
(l -S) T (A12)

v .

c lc

or
~(fiT - -i

)

(l -s) T R- (A13)
c

if one assumes that

!W
<< (A14)

c

Note that T(s) by itself is not the round-trip time delay.

For the more familiar monostatic or backscatter geometry,

n= RoT  R R R and, therefore,

nTR
fi4.

1 T
= c (A15)

1+ nT " V
c

and

ST (s + l) (A16)T~s 0 2

%A



263

where
2R0

To - (Al7)

and

(i- s) = 2 T (A18)
T

or

(I- s) 2 T (A19)c

When the velocity of the target V 0 , note that both Equations

(A9) and (A1S) reduce to s = 1 and, therefore, the round-trip time

delays T(s s=l , for the bistatic and monostatic cases reduce to

Equations (All) and (A17), respectively, as would be expected. In

addition, it is instructive to consider the backscatter case and assume

that a point target is moving away from the observer. Therefore, the

radial velocity fiT V > 0 in Equation (A15) and, as a result, s < 1

With s < 1 , (1 - s) > 0 and the complex exponential

exp{-j2Trf c(l-s)t} in Equation (A8) corresponds to a negative Doppler

shift which is physically correct. The backscattered signal begins

to appear at the output of the receiver at time [see Equations (A8)

and (A16)1

T(S). 2R0r~s) - o ____(A23)

s c 12

and with s < 1 , T(s) > 2R /c sec which is also physically correct.
s 0

Similarly, if the point target is moving toward the observer, then

n V < 0 , s > 1 , (1 - s) < 0 , exp{-j21fc(l-s)t} corresponds to
T '
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a positive Doppler shift, and T(s) < 2R /c sec.
S 0

Equation (A8) represents the complex envelope of the return

16
signal. If one calculates the pre-envelope or analytic signal of

y(t) , Z y(t) , one obtains:

Z (t) = y(t)exp(+j2rf t) (A21)y c

= f[ t T~s) 1 J exp +j2rf c [ I Et- --- }

(A22)

= z {s[ S~i (A23)

where the amplitude terms of Equation (A8) were dropped and Zx () is

the analytic signal of x(t)

With the exception of a multiplying amplitude factor, Equation

(A22) is identical in form with the model of the return signal
27

specified by Equation (1) in Gassner and Cooper. Indeed, for the

backscatter case, s and T(s) as given by Equations (A15) and (A16),

respectively, are equal to the expressions 0 and T , respectively,0 0

27as defined by Equations (3) and (4) in Gassner and Cooper. The

parameter T is referred to as being a suitably defined delay time28

0

and is not referred to as being the round-trip time delay.2 7'28

29
Kelley and Wishner model the backscattered echo corresponding

to the transmission f(t) as:

f[x(t - s)I (A24)

for a constant velocity target, where their "Doppler stretch factor" x

is equal to our s as given by Equation (A15), and their s is defined
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as round-trip time delay. More specifically, referring to Equation (5)

of Kelley and Wishner29

= 2 -2 )
c s = 2 r() (A25)

2

where t = s/2 is the time at which a photon, having left the

transmitter at t = 0 , is reflected by the target, and r(s/2) is

the target's range from the transmitter when the reflection occurred.

Therefore, s is the round-trip time delay or, as Kelley and Wishner
2 9

state, ". . .the delay of a photon arriving at s is just s ." Thus,

by comparing Equations (A23) and (A24), it can be seen that their round-

"lttrip time delay s is equivalent to our round-trip time delay T(s)/s

with the notable exception that our round-trip time delay [see Equation

(A20)] is explicitly shown to be a function of the Doppler shift factor.

The round-trip time delay T(s)/s can also be expressed in

another way. If one defines the Dopper shift * (in Hz) as:

= -(l- s)fc , (A26)

then the time compression/stretch factor s is given by:

s = 1 + (/fC) . (A27)

Therefore, with the use of Equation (A26), the general bistatic

expression for T(s) as given by Equation (Al0) can be written as:

T(s) T(p) T + [(R o)/(fcC)] , (A28)
R
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where

T0 (R 0+ R 0)/c (A29)

Thus, from Equations (A27) and (A28), the round-trip time delay T(S)/S

can also be expressed as T(, )/[l + (4/f )]



APPENDIX B

DERIVATION OF THE PROBABILITY DENSITY FUNCTION

OF THE RANDOM DOPPLER SHIFT RND

Consider the random variable

=6 f (fT 6R) • v /c = fc Tf Vl ~ c s l

'RND c T - R f c T - fltIfIcosE/c

(4.2-48)

where it is assumed that IVf is Maxwell distributed, the angle

is uniformly distributed, and that the random variables l fI and cosE

- = 2 2 2 1/2
are statistically independent. In order for IVfI m (Vf + Vf + Vf

Nq x y z

to be Maxwell distributed, the three components Vf , Vf , and Vf

x y z
must be statistically independent Gaussian random variables, each with

zero mean and variance a2 (e.g., see Papoulis 32).

In order to derive the probability density function of

first rewrite Equation (4.2-48) as:

RND = XY , (Bl)

where

X = aVfl , (B2)

Y = cosE (B3)

and
a - -n R/c (B4)

Note that E{ RND} = E{X}E{Y} = 0 since E{cos} = 0 when E is

30uniformly distributed. Since X and Y are statistically
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independent random variables, the probability density function of ORND
31,32

is given by:

00

Pf -j L Px(x) py (O/x)dx (B5)
RIND -0 1xJ

where
32

1

Px) - p(x/a) (B6)
jal 1VfI

(2/)1/2 (1/
3 )(x/a) 2exp[-(l/2)(x/[aa]) 2

p_ (x/a) x > 0

0O ; x < 0 (B7)

and
30 ,32

1/[Tr(i- L/x12 )1 /2 1 ; 1//xJ < 1
p= (B8)

0 l0/xI > 1

Note that the probability that (O/x) = + 1 is zero. 32  Substituting

Equations (B6) through (B8) into Equation (B5) yields:

P(0) - (c/[jnT - nRl f ca1)gRNDi fl~ca] ~/fr

f (lxl)0ll - Ix)21l/2 )x2

exp{-(1/2) (c/[ jiir.a - 2 2 }dx

.x > o 1/xI < 1 (B9)
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or

p w4 (c/[In i R f cfa]) 3(r2 (Tr /Tr)
'RNDT Rc

(x 2 / *2 21/2~

exp{-(1/2)Cc/[jIi^T - iiRlfco]) 2x 2}dx

< x < 00 (BlO)

which is the probability density function of the random Doppler shift

ORDas given by Equation (4.2-48).
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APPENDIX C

DERIVATION OF THE NORMAL PARTIAL DERIVATIVE

OF THE TOTAL ACOUSTIC PRESSURE FIELD ON THE OCEAN SURFACE

The total acoustic pressure field on the ocean surface at

r(t!) is defined by Equation (5.2-18), i.e.,

p P 1[r(tj)I + pSr(tl)] , (5.2-18)

so t'at

pPr(t1 )I = + S- p [r(tl)] (Cl)

where
5 1

1~ a 4.
(Plr(t{)] = n Vp [r(ti)] (C2)

and

[r(t = • VP[r(t)] . (C3)

Upon substituting Equation (5.2-28) into the right-hand side of

Equation (C2) and then evaluating the gradient, one obtains:

P[r(t')] (n _j (p • i~)] •

~~~-~~ p[()I =- fTiEFFI(ti)1

n VDT k, r(t')] ( 4T l I }(C4)
.( n T)kEFFDT[k,r(ti)]

... ' T 1

S- mom
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since (e.g.., see References 26, 46, or 52):

Sexp[-JkEFF l(tl)] = exp[-JFFRT( ]

(C)

Now if one assumes that

IkEFFRT(t) I >> 1 (C6)

and that

* VDT[k,'(t')]l

<< 1 (C7)

"0n^ "nT)k EFFT [k,r(tl) I

then Equation (C4) simplifies to:

Pl[r(t{) n- (- .nT)JkEFFPI~r(tl)] (C8)

Equation (C3) will be evaluated next. Following the Kirchhoff

approximation, the amplitude of the scattered acoustic pressure field

on the ocean surface at r(t) is approximated by:

S [r t ) I R E F  P l r ~ t 1 ( C )

where the reflection coefficient CREF  is assumed to be a constant.

The direction of pS(') is specified by the unit vector ns (see

Figure Cl). Substituting Equation (C9) into Equation (C3) yields:

S r(t)] REF Vp [r(t()]CIO)
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Figure Cl. Scatter geo.,etry for locally plane
surface area element dS
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or, from Equation (C2),

PS r t )] = CREF  ;n P r 1 C )

where

{ exp[-JkEFFRT(t )] 'x =j [ EFFRT(ti) n

RTi(t IRT(tj)~ Rr(ti) S

(C12)

Note that the unit vector appearing in Equation (C12) is ns and not

T * Therefore, by replacing nT in Equation (C8) with s 9 Equation

(ClI) becomes:

)pC(t{l - ( •s)CREFJkEFFpI[r(tI) . (C13)

i C oConsistent with the Kirchhoff approximation, the infinitesimal surface

area element dS associated with the position vector r(t') is

assumed to be locally plane as is illustrated in Figure Cl. Since for

a plane wave incident upon a plane boundary, the angles 6I and 6S

are equal, then from Figure Cl, it can be seen that:

n nT cs = =(- cose . (C14)

With the use of Equation (C14), Equation (C13) can be rewritten as:

T- PS[r(tP )  = + (a " nT)CREFJkEFFPIr(tl)] (C15)

and upon substituting Equations (C8) and (C15) into Equation (Cl), one

obtains the desired result:

4g!



274

-p[r(tl)] (_ f T)[l - CEFIjkEFFpI[r(tl)]

(C16)

which is the normal partial derivative of the total acoustic pressure

field on the ocean surface at r(t!)

I



APPENDIX D

FUNCTIONAL DEPENDENCE OF THE TRANSMIT AND RECEIVE

DIRECTIVITY FUNCTIONS AND VECTORS a(x,y)

AND b(x,y) ON THE (x,y) COORDINATES

In order to obtain the functional dependence of the (ax,a,a z)x y

and (bx,b y,b z ) terms on the (x,y) coordinates, one must first

obtain expressions for fiT(x,y) and R(x,y) Refer back to Figure

17 and note that:

nT u TRXT + VTYT + wTZT (DI)

where

u r T sineTCOS4?T

vT = sineTsin T (D2)

and

A
wT = coseT

are the direction cosines of nT with respect to the XYTZT

coordinate system. The spherical angles 0T and $T are also

measured with respect to the XTYTZT coordinate system. Now let us

assume that the YT and Y axes are parallel to one another so that

Y= " If the XYTZT coordinate system is then rotated by an angle

in a clockwise direction with respect to the XYZ coordinate

system, and recalling that 7 ir , we obtain [see Figure D1 and,

for example, Butkov 
54):
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z

xT

Figure Dl. Orientation of the XTYZ T  coordinate
system with respect to The XYZ reference
coordinate system.
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fT(x,y) [uT(xy)cos$T + WT(X,y)sinaT]^ +

VT(X'y)^ + [wT(xy)cos8T - UT(X,y)sinST]z

(D3)

where
[x + (coseltan8T + sine )R ]COSBT

U r(X,y) RT(xy)

vT (x,y) = Y/RT(x,y) (D4)

and

WT(X,y) = + 2

and

RT(x,y) = x2 + y2 + 2R1xsine1 + R1 (D5)

I Although Figure Dl shows R and the ZT axis to be colinear,

this may not be true in general. For example, if the transmit beam

pattern were to be tilted in the XTZT plane, R1  and the ZT axis

would no longer be colinear. However, RI is always chosen to be

colinear with the axis of the main lobe of the transmit beam pattern.

Whether the transmit beam pattern is tilted or untilted in the X.TZT

plane, the rotation angle $T is still defined as the angle between

the Z and ZT axes as shown in Figure Dl.

Equation (D4) can also be used to project the far-field transmit

directivity function DT(kxT,kYT) onto the XY plane. It has already

been stated in Chapter IV that DT(kXT kyT) is given by the two-

dimensional Fourier transform of the spatial distribution of normal

driving velocity, say qT(xTYT) ; i.e.,
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DT (k k f ff q T(xVYT ) exp, +j (k x + k yT)]dx~dYT T R T (06)Ye (06)

when the baffle surrounding the active region R of the array is

assumed to be rigid [see Equation (4.2-7)]. The x T  and yT

components of the wave number k are given by:

k kuT  ksin Tcos$T

and (D7)

k Y kv = ksineTsin T

where uT and vT are defined in Equation (02) and k (2iTf)/c

(2)/X . Replacing uT - sineTcOS T and VT = sinBTsinT with

UT(X,y) and vT(xy) as given in Equation (D), respectively,

yields the desired transformation

DT.(k ,k) D T(k,x,y) (D8)

The next piece of information required is an expression for

UR(x,y) . Instead of working with nR directly, let us work with

which is defined as:

* R -nR  UR + VR9R + wR'R (D9)

where

U R  sinORcOSIPR

vR sinRsinPR (DO)

and A cose

R sR

9ag
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are the direction cosines of n^ with respect to the XRYRZR

coordinate system. The spherical angles 6 R and R are also

measured with respect to the XRYRZR coordinate system. From Figure D2,

it can be seen that the XY plane and YR axis are parallel to one

another with the YR axis rotated through an angle a R with respect

to the Y axis, and the ZR axis rotated through an angle R with

respect to the Z axis. Therefore,

i,(xy) = [uR(xy)cos'Rcos R + VR(Xy)sinR -

wR(x,y)sinRcOScR]x +

[VR(x'y)cosaR - uR(x y)sina RcosaR +

wR(xY)sina sin +

RUR(x,y)sin8 R + WR(x,y)cos8R J , (DlI)

where

[(x-R 2u2) -(y-R 2v2) tantR]Cosa RcosBR-R w2sinBR
RR(xy)

(x-R u2)sinaR + (Y-R v2)CosaR

v (X,y) 22 R R 22 R (D12)

and

wR(X,y) - + u 2 2XY - v(XY)

R 2 22 (D3)
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and

u 2 = sine 2cos 2

v2 = sin 2sin 2  (D14)

and

w2 = cose 2

4.
Although Figure D2 shows R2 and the ZR axis to be colinear,

this may not be true in general. For example, if the receive beam

pattern were to be tilted in the XRZR plane, R2 and the ZR axis

would no longer be colinear. However, R2  is always chosen to be

colinear with the axis of the main lobe of the receive beam pattern.

Whether the receive beam pattern is tilted or untilted in the XRZR

plane, the rotation angle 8R  is still defined as the angle between

the Z and ZR axes as shown in Figure D2.

IWith the use of Equation (D12), the receive directivity

function D R(k xR,k yR) can also be projected onto the XY plane as

was done for D T(k xT,k) . That is, we know that

kxR = kuR ksineRcos'R

and (D15)

k yR = kvR  ksinRsin R

where u R and vR are defined in Equation (DIO). Replacing

uR = sine RcOS*R and vR = sineRsinPR with uR(x,y) and vR(x,y) as

given in Equation (D12), respectively, yields the desired transforma-

tion:

DR (k xR,k) DR(k,x,y) . (D16)
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We are now in a position to calculate the functional dependence

of the (axt y a ,a and (b , b , b z) terms on the (x,y) coordinates.

From Equations (5.2-75), (W3), (D9), and (Dll), we obtain:

a x(x,y) - u T (x,y)COSaT + u R(x,y)cosa R Cosa R +

v R(x9ysn R + w T(x,y'/sinaT -

w R(x,y)sin R Cosa R

ayf(x,y) =-uR(xY) sin R Cosa R + v T(x,y) +

VR(x9Y)cosatR + wR(x,y)sinczRsinaR

and CD 17)

a z(X,y) -- uT (x~y)sin$T + uR(x,y)sin$R +

wT(xY)cosaT + wR(xY)cosaR

and from Equations (5.2-76), (W3), (D9), and (Dll), we obtain:

b x(x,y) u T (x,y)cosa T + w T(x,y)sinaT -

u R(x~ y)cosctR Cosa R - V R (x,y)sina R +

w R x,y)sin R Cosa R

b y X,) v T (x,y) -v R(x,y)cosa R +u.R(x,y)sinctRcosBR

w R (x, y)sina R sin$ R

and (D18)

b (xy) w wT (x,y)COSBT - uT (x,y)sin6 T-

u R(x,y)sinS R - w R (x,y)COsaR



APPENDIX E

THE RELATIONSHIP BETWEEN RE(Ax,6y,At') , R (Ax,AYAt)

AND THE DIRECTIONAL WAVE NUMBER SPECTRUM OF THE OCEAN SURFACE

Let us examine the retar' time

S R2 2 sine2cs2 +

sine 2sin 2  cose 2

2 __2 IXYt

Z2  + --- - (x,y,t') i +

2 2

(I - sin 2 o2sin 2 2  2

2R 2
2 2

where Equation (El) was obtained by substituting Equation (5.2-66) into

Equation (5.2-19). Note that tI  as given by Equation (El), is a

random variable since F(x,y,t') is random. Since

R2 < 1 (E2)

and assuming that

Ro ca and R (E3)

Equation (El) can be approximated by:
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t! i cR2 R2
tI  t R2 { 1-2 os + sin82sin 2

(E4)

which is now a deterministic quantity.

Referring back to Equation (5.3-18), it can be seen that t' is

associated with the spatial coordinates (x + Ax) and (y + Ay) and

that t' is associated with x and y . Therefore, using the form
2

of Equation (E4), t' and t' can be written as:
1 2

R 2 r r sine2cos*2
ti = t - 2 LR (x + Ax) +

1 cR2

sin82sin 2 (y + Ay) 1 } (E5)

R 2

and

R2 [ sin2cs*2 sin8 2sin*2
t - 1- 2 si+.R 2  R 2

(E6)

By subtracting Equation (E6) from Equation (E5), one obtains:

At' - At + -c [sin82 cosi2Ax + sinO2 sin 2Ay] , (E7)

where At - t - t2 . Thus, from Equation (E7), it can be seen that

At' is a function of Ax, Ay, and At . Using the two-dimensional

Fourier transform relationship
4 8
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R(xyt) [41)j f W(p,q)

exp[-jpAx - jqAy + jw(p,q)At']dpdq

(E8)

and substituting Equation (E7) into Equation (E8), one obtains:

where

R GAxAyAt) = -J J) f W(p,q)exp[+jw(p,q)AtI

sine 2csn 2

The expression W(p,q) is the directional wave number spectrum of the

ocean surface, where W(p,q)dpdq is the amount of the component of

the rough surface having the spatial wave number between p and

p + dp in the x direction and between q and q + dq in the y

direction. The corresponding angular frequency (in rad/sec) is given

by:

_ g~p ,2~/2 11/2
w(p~q) -P + q 2 1/2 (Ell)
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48where g is the acceleration due to gravity. The spectral density

W(p,q) is a real positive function of p and q and since &(x,y,t)

is real, W(p,q) is an even function of p and q , i.e.,

W(-p,-q) = W(p,q) . Equation (Ell) is applicable to deep-water ocean

surface waves and it is an odd function of p and q , i.e.,

j(-p,-q) = -w(p,q) . The choice of sign in Equation (Ell) depends upon

the motion of the surface.4 8 For example, consider the backscatter case

where both the transmit and receive array are located at I = 42 = Tr

01 = 02 ' and R1 = R2  (see Figure 20). If the surface wave motion

is in the positive x direction, choose the negative sign in Equation

(Ell) since

exp[+jw(p,q)At] = exp { -j[g(p 2 + q2)i1/2]i/2At} (El2)

will then correspond to a downward shift in frequency from the carrier,

i.e., a negative Doppler shift. This makes physical sense because the

surface waves are moving away from the receive array. Similarly, if

the surface wave motion is in the negative x direction, choose the

positive sign in Equation (Ell) since

exp[+jw(p,q)At] - exp { +j[g(p2 + q2)l/2]1/2At} (E13)

will then correspond to a upward shift in frequency from the carrier,

i.e., a positive Doppler shift. This also makes physical sense because

the surface waves are moving toward the receive array.
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